The efficacy, safety, and immunogenicity of both asparaginase preparations are comparable. This trial was registered at www.clinicaltrials.gov as #NCT00784017; EudraCT number 2006-003180-31.
Pediatric acute lymphoblastic leukemia (ALL) is treated with combination chemotherapy including mercaptopurine (6MP) as an important component. Upon its uptake, 6MP undergoes a complex metabolism involving many enzymes and active products. The prognostic value of all the factors engaged in this pathway still remains unclear. This study attempted to determine which components of 6MP metabolism in leukemic blasts and red blood cells are important for 6MP's sensitivity and toxicity. In addition, changes in the enzymatic activities and metabolite levels during the treatment were analyzed. In a cohort (N=236) of pediatric ALL patients enrolled in the Dutch ALL-9 protocol, we studied the enzymes inosine-5'-monophosphate dehydrogenase (IMPDH), thiopurine S-methyltransferase (TPMT), hypoxanthine guanine phosphoribosyl transferase (HGPRT), and purine nucleoside phosphorylase (PNP) as well as thioguanine nucleotides (TGN) and methylthioinosine nucleotides (meTINs). Activities of selected enzymes and levels of 6MP derivatives were measured at various time points during the course of therapy. The data obtained and the toxicity related parameters available for these patients were correlated with each other. We found several interesting relations, including high concentrations of two active forms of 6MP--TGN and meTIN--showing a trend toward association with better in vitro antileukemic effect of 6MP. High concentrations of TGN and elevated activity of HGPRT were found to be significantly associated with grade III/IV leucopenia. However, a lot of data of enzymatic activities and metabolite concentrations as well as clinical toxicity were missing, thereby limiting the number of assessed relations. Therefore, although a complex study of 6MP metabolism in ALL patients is feasible, it warrants more robust and strict data collection in order to be able to draw more reliable conclusions.
PURPOSE The ALL10 protocol improved outcomes for children with ALL by stratifying and adapting therapy into three minimal residual disease–defined risk groups: standard risk, medium risk (MR), and high risk. IKZF1-deleted ( IKZF1del) ALL in the largest MR group still showed poor outcome, in line with protocols worldwide, accounting for a high number of overall relapses. ALL10 showed high toxicity in Down syndrome (DS) and excellent outcome in ETV6::RUNX1 ALL. Poor prednisone responders (PPRs) were treated as high risk in ALL10. In ALL11, we prolonged therapy for IKZF1del from 2 to 3 years. We reduced therapy for DS by omitting anthracyclines completely, for ETV6::RUNX1 in intensification, and for PPR by treatment as MR. METHODS Eight hundred nineteen patients with ALL (age, 1-18 years) were enrolled on ALL11 and stratified as in ALL10. Results were compared with those in ALL10. RESULTS The five-year overall survival (OS), event-free survival (EFS), cumulative risk of relapse (CIR), and death in complete remission on ALL11 were 94.2% (SE, 0.9%), 89.0% (1.2), 8.2% (1.1), and 2.3% (0.6), respectively. Prolonged maintenance for IKZF1del MR improved 5-year CIR by 2.2-fold (10.8% v 23.4%; P = .035) and EFS (87.1% v 72.3%; P = .019). Landmark analysis at 2 years from diagnosis showed a 2.9-fold reduction of CIR (25.6%-8.8%; P = .008) and EFS improvement (74.4%-91.2%; P = .007). Reduced therapy did not abrogate 5-year outcome for ETV6::RUNX1 (EFS, 98.3%; OS, 99.4%), DS (EFS, 87.0%; OS, 87.0%), and PPR (EFS, 81.1%; OS, 94.9%). CONCLUSION Children with IKZF1del ALL seem to benefit from prolonged maintenance therapy. Chemotherapy was successfully reduced for patients with ETV6::RUNX1, DS, and PPR ALL. It has to be noted that these results were obtained in a nonrandomized study using a historical control group.
Background: IKZF1 deletions are the most frequent secondary genetic alterations with prognostic impact in pediatric Philadelphia-positive B-cell precursor acute lymphoblastic leukemia (Ph+ BCP-ALL). Studies of IKZF1 status have mainly focused on deletions of the gene whereas very little is known about other genetic alterations in the IKZF1 locus. Aim: Using an amplicon deep sequencing approach to investigate IKZF1 mutations occurrence in pediatric Ph+ BCP-ALL reported as IKZF1wildtype (WT) for deletions by MLPA analysis. Methods: Six European centres participated in this study with a total of 98 patients.The 454 GS Junior system (Roche) was used to sequence the coding regions of IKZF1, Exon1 - Exon7 (Mullighan C. et al, 2009). An average depth of 250 reads (minimum of 102 reads, maximum of 853 reads) per amplicon was achieved. Quality control analysis excluded variants coverage of <50 reads in both forward and reverse directions. Variant analyses were performed using Amplicon Variant Analyzer (AVA) software (Roche). Variants at intronic regions or in homopolymeric stretches were excluded from further analysis, and a cut-off ≥10% mutated reads was applied to define mutations. Finally, variants described as SNPs or silent mutations were excluded. Results: In total, 882 amplicons were screened obtaining 337 variants. Of these, 14 variants corresponding to mutations with predicted deleterious impact on the function of IKZF1 passed the filters of our analysis pipeline. Twelve out of 98 (12%) IKZF1 non-deleted patients were mutated and 2 of them carried double mutations. Both cases showed different mutant allele frequencies of the 2 mutations, suggesting the presence of leukemic sub-populations with different IKZF1 status. Mutations can be subdivided in 2 categories: 5 miss-sense point mutations localized at the DNA binding domain with a dominant negative effect and 7 frameshift mutations leading to haploinsufficiency and impairing also the dimerization activity of IKZF1. The 5 point mutations were located in exon4 and 4 out of 5 were localized in the coding region of zinc finger 2 (ZF2), essential for DNA-protein interaction. Three patients carried the same c.698A>G substitution, that caused the change of Asparagine 159 into Serine. The 7 frameshift mutations (2 deletions, 4 insertions and 1 InDel) were identified all along the IKZF1locus. These nucleotide variations caused a shift in the reading frame and a consequent formation of premature stop codons depleting the C-terminal dimerization domain. Six out of 12 patients carrying IKZF1 mutations experienced an event (either relapse or death in CCR): 6 patients were treated in the pre-TKI (tyrosine kinase inhibitor) era and had 5 events while the remaining 6 patients received imatinib and showed a more favourable outcome with only one patient who died in CCR. This trend is in line with the findings recently reported by Van der Veer et al. (2014). In this study on IKZF1 deletions were identified in 126 of 191 patients, while 65 were defined IKZF1 WT on the basis of deletions analysis alone. Our study revealed that 6 of these 65 IKZF1 WT patients carried IKZF1 mutations (3 in the pre-TKI and 3 in the EsPhALL cohort). The outcome of mutated patients and deleted patients taken together (IKZF1 aberrant) is consistent with results reported in the Van der Veer study, both for the pre-TKI cohort [(4-year disease free survival (DFS) was 28.1% [SE 6.4] for IKZF1 aberrant vs 64.3% [SE 9.7] for IKZF1 WT, P=0.0036); Van der Veer study (30.0% [SE 6.8] for IKZF1 deleted vs 57.5% [SE 9.4] for IKZF1 WT, P=0.013)] and for the EsPhALL cohort [(4-year DSF was 55.7% [SE 6.8] for IKZF1 aberrant vs 59.8% [SE 11.6] for IKZF1 WT (P=0.348); Van der Veer study (4-year DFS was 53.6 [SE 7.0] for IKZF1 deleted vs 63.1 [SE 11.0] for IKZF1WT, P=0.1676]. Conclusion: This work revealed IKZF1 mutations in >10% of Ph+ BCP-ALL pediatric patients previously classified as IKZF1 WT on the basis of deletions analysis. Our results, together with data of IKZF1 deletions, highlight a 70-75% incidence of IKZF1 aberrations in pediatric Ph+ patients. Exon4 carried 9 of 14 aberrations: 7 point mutations and 2 deletions, suggesting a hotspot region for somatic mutations acquisition. The outcome of mutated patients is in line with the data previously published on the impact of IKZF1 deletions in pre and post TKI cohorts, suggesting a similar impact of mutations and deletions on clinical outcome of pediatric Ph+ patients. Disclosures No relevant conflicts of interest to declare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.