BACKGROUND AND PURPOSEOestrogen therapy is known to induce cardioprotection in post-menopausal metabolic syndrome (PMS). Hence, we investigated the effect of 17-β oestradiol (E2) on functional responses to angiotensin II and cardiovascular dysfunction in a rat model of PMS. EXPERIMENTAL APPROACHPMS was induced in ovariectomized rats by feeding a high-fat diet for 10 weeks. Isometric tension responses of aortic rings to angiotensin II were recorded using an isometric force transducer. TUNEL assay and immunoblotting was performed to assess apoptosis and protein expression respectively in PMS. KEY RESULTSEndothelial dysfunction in PMS was characterized by enhanced angiotensin II-induced contractile responses and impaired endothelial dependent vasodilatation. This was associated with an increased protein expression of AT1 receptors in the aorta and heart in PMS. PMS induced cardiac apoptosis by activating Bax and PARP protein expression. These changes were associated with a down-regulation in the expression of silent information regulation 2 homologue (SIRT1)/P-AMP-activated PK (AMPK) and increased H3 acetylation in aorta and heart. E2 partially suppressed angiotensin II-induced contractions, restored the protein expression of SIRT1/P-AMPK and suppressed H3 acetylation. The role of SIRT1/AMPK was further highlighted by administration of sirtinol and compound C (ex vivo), which enhanced angiotensin II contractile responses and ablated the protective effect of E2 on PMS. CONCLUSION AND IMPLICATIONSOur results provide novel mechanisms for PMS-induced cardiovascular dysfunction involving SIRT1/AMPK/ histone H3 acetylation, which was prevented by E2. The study suggests that therapies targeting SIRT1/AMPK/epigenetic modifications may be beneficial in reducing the risk of cardiovascular disorders. AbbreviationsAMPK, AMP-activated PK; Ang II, angiotensin II; E2, 17-β oestradiol; PMS, post-menopausal metabolic syndrome; SIRT1, silent information regulation 2 homologue BJP British Journal of Pharmacology
In the past two decades, in vitro in vivo correlation (IVIVC) has been considered an important tool for supporting biowaivers, setting dissolution acceptance criteria, and more recently in the Quality by Design (QbD) framework promoting the establishment of clinically meaningful drug product specifications using dissolution as the endpoint. Based on our review experience at the FDA, for the purposes of this article, we analyzed the current state of regulatory submissions containing IVIVC approaches and discussed the successes and failures from the perspectives of study design to methodology. In the past decade, the overall acceptance rate of the IVIVC submissions is about 40%. Moreover, the number of IVIVC studies seen in the submissions per year is not increasing. Establishing clinically meaningful drug product specifications through the linkages between the identified critical quality attributes and in vivo performance is key for developing a quality drug product. To achieve this goal, there is an imminent need for addressing the issues behind a low success rate in IVIVC development. The results from the current analysis revealed that special considerations should be taken in areas such as (1) selection of appropriate number/kind of formulations for IVIVC development/validation, (2) construction of exploratory plots to guide model building and selection, (3) investigation of the reasons of inconclusive predictability, (4) improvement on the quality and richness of the data, and (5) avoidance of over parameterization. The development and incorporation of biopredictive dissolution methods and the use of non-conventional approaches, including mechanistic/physiologically based approaches, should be explored to increase the likelihood of IVIVC success.
Cell Competition is an interaction between cells for existence in heterogeneous cell populations of multicellular organisms. This phenomenon is involved in initiation and progression of cancer where heterogeneous cell populations compete directly or indirectly for the survival of the fittest based on differential gene expression. In Drosophila, cells having lower dMyc expression are eliminated by cell competition through apoptosis when present in the milieu of cells having higher dMyc expression. Thus, we designed a study to develop c-Myc (human homolog) dependent in vitro cell competition model of human cancer cells. Cells with higher c-Myc were transfected with c-myc shRNA to prepare cells with lower c-Myc and then co-cultured with the same type of cells having a higher c-Myc in equal ratio. Cells with lower c-Myc showed a significant decrease in numbers when compared with higher c-Myc cells, suggesting "loser" and "winner" status of cells, respectively. During microscopy, engulfment of loser cells by winner cells was observed with higher expression of JNK in loser cells. Furthermore, elimination of loser cells was prevented significantly, when co-cultured cells were treated with the JNK (apoptosis) inhibitor. Above results indicate elimination of loser cells in the presence of winner cells by c-Myc-dependent mechanisms of cell competition in human cancer cells. This could be an important mechanism in human tumors where normal cells are eliminated by c-Myc-overexpressed tumor cells. J. Cell. Biochem. 118: 1782-1791, 2017. © 2016 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.