The engineering of polymorphs in two-dimensional layered materials has recently attracted significant interest. Although the semiconducting (2H) and metallic (1T) phases are known to be stable in thin-film MoTe2, semiconducting 2H-MoS2 is locally converted into metallic 1T-MoS2 through chemical lithiation. In this paper, we describe the observation of the 2H, 1T, and 1T' phases coexisting in Li-treated MoS2, which result in unusual transport phenomena. Although multiphase MoS2 shows no transistor-gating response, the channel resistance decreases in proportion to the temperature, similar to the behavior of a typical semiconductor. Transmission electron microscopy images clearly show that the 1T and 1T' phases are randomly distributed and intervened with 2H-MoS2, which is referred to as the 1T and 1T' puddling phenomenon. The resistance curve fits well with 2D-variable range-hopping transport behavior, where electrons hop over 1T domains that are bounded by semiconducting 2H phases. However, near 30 K, electrons hop over charge puddles. The large temperature coefficient of resistance (TCR) of multiphase MoS2, -2.0 × 10(-2) K(-1) at 300 K, allows for efficient IR detection at room temperature by means of the photothermal effect.
Although monolayer transition metal dichalcogenides (TMDs) exhibit superior optical and electrical characteristics, their use in digital switching devices is limited by incomplete understanding of the metal contact. Comparative studies of Au top and edge contacts with monolayer MoS reveal a temperature-dependent ideality factor and Schottky barrier height (SBH). The latter originates from inhomogeneities in MoS caused by defects, charge puddles, and grain boundaries, which cause local variation in the work function at Au-MoS junctions and thus different activation temperatures for thermionic emission. However, the effect of inhomogeneities due to impurities on the SBH varies with the junction structure. The weak Au-MoS interaction in the top contact, which yields a higher SBH and ideality factor, is more affected by inhomogeneities than the strong interaction in the edge contact. Observed differences in the SBH and ideality factor in different junction structures clarify how the SBH and inhomogeneities can be controlled in devices containing TMD materials.
Quantum localization–delocalization of carriers are well described by either carrier–carrier interaction or disorder. When both effects come into play, however, a comprehensive understanding is not well established mainly due to complexity and sparse experimental data. Recently developed two-dimensional layered materials are ideal in describing such mesoscopic critical phenomena as they have both strong interactions and disorder. The transport in the insulating phase is well described by the soft Coulomb gap picture, which demonstrates the contribution of both interactions and disorder. Using this picture, we demonstrate the critical power law behavior of the localization length, supporting quantum criticality. We observe asymmetric critical exponents around the metal-insulator transition through temperature scaling analysis, which originates from poor screening in insulating regime and conversely strong screening in metallic regime due to free carriers. The effect of asymmetric scaling behavior is weakened in monolayer MoS2 due to a dominating disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.