Artificial van der Waals heterostructures with two-dimensional (2D) atomic crystals are promising as an active channel or as a buffer contact layer for next-generation devices. However, genuine 2D heterostructure devices remain limited because of impurity-involved transfer process and metastable and inhomogeneous heterostructure formation. We used laser-induced phase patterning, a polymorph engineering, to fabricate an ohmic heterophase homojunction between semiconducting hexagonal (2H) and metallic monoclinic (1T') molybdenum ditelluride (MoTe2) that is stable up to 300°C and increases the carrier mobility of the MoTe2 transistor by a factor of about 50, while retaining a high on/off current ratio of 10(6). In situ scanning transmission electron microscopy results combined with theoretical calculations reveal that the Te vacancy triggers the local phase transition in MoTe2, achieving a true 2D device with an ohmic contact.
The excess of surface dangling bonds makes the formation of free-standing two-dimensional (2D) metals unstable and hence difficult to achieve. To date, only a few reports have demonstrated 2D metal formation over substrates. Here, we show a free-standing crystalline single-atom-thick layer of iron (Fe) using in situ low-voltage aberration-corrected transmission electron microscopy and supporting image simulations. First-principles calculations confirm enhanced magnetic properties for single-atom-thick 2D Fe membranes. This work could pave the way for new 2D structures to be formed in graphene membranes.
We propose a detailed mechanism for the growth of vertical graphene by plasma-enhanced vapor deposition. Different steps during growth including nucleation, growth, and completion of the free-standing two-dimensional structures are characterized and analyzed by transmission electron microscopy. The nucleation of vertical graphene growth is either from the buffer layer or from the surface of carbon onions. A continuum model based on the surface diffusion and moving boundary (mass flow) is developed to describe the intermediate states of the steps and the edges of graphene. The experimentally observed convergence tendency of the steps near the top edge can be explained by this model. We also observed the closure of the top edges that can possibly stop the growth. This two-dimensional vertical growth follows a self-nucleated, step-flow mode, explained for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.