Proteins incorporated into phospholipid Langmuir-Blodgett (LB) films are a good model system for biomembranes and enzyme immobilization studies. The specific fluidity of biomembranes, an important requisite for enzymatic activity, is naturally controlled by varying phospholipid compositions. In a model system, instead, LB film fluidity may be varied by covering the top layer with different substances able to interact simultaneously with the phospholipid and the protein to be immobilized. In this study, we immobilized a carbohydrate rich Neurospora crassa alkaline phosphatase (NCAP) in monolayers of the sodium salt of dihexadecylphosphoric acid (DHP), a synthetic phospholipid that provides very condensed Langmuir films. The binding of NCAP to DHP Langmuir-Blodgett (LB) films was mediated by the anionic polysaccharide iota-carrageenan (iota-car). Combining results from surface isotherms and the quartz crystal microbalance technique, we concluded that the polysaccharide was essential to promote the interaction between DHP and NCAP and also to increase the fluidity of the film. An estimate of DHP:iota-car ratio within the film also revealed that the polysaccharide binds to DHP LB film in an extended conformation. Furthermore, the investigation of the polysaccharide conformation at molecular level, using sum-frequency vibrational spectroscopy (SFG), indicated a preferential conformation of the carrageenan molecules with the sulfate groups oriented toward the phospholipid monolayer, and both the hydroxyl and ether groups interacting preferentially with the protein. These results demonstrate how interfacial electric fields can reorient and induce conformational changes in macromolecules, which may significantly affect intermolecular interactions at interfaces. This detailed knowledge of the interaction mechanism between the enzyme and the LB film is relevant to design strategies for enzyme immobilization when orientation and fluidity properties of the film provided by the matrix are important to improve enzymatic activity.
Polyethylene (PE) is a polymer that has a low adhesion property, which is related to its low surface energy. However, the plasma treatment aims the modification of the surface properties without affecting the polymer structure. In this sense, the objective of this work was to prepare biocomposite films via flat extrusion with Green PE matrix and Expanded Vermiculite Clay (VMT), contents of 1, 3 and 6%. The films were treated by plasma in two different ways: Oxygen (O 2) atmosphere (Condition 1); and Argon/Hydrogen (Ar/H 2) atmosphere followed by a plasma treatment under O 2 atmosphere (Condition 2). The results of the contact angle measurements indicated that the incorporation of VMT and the conditions used for plasma treatment increased the films wettability due to the hydrophilic character of VMT and also as a consequence of the plasma. In contrast, the XRD diffractograms indicated that there were no significant changes in the films structure.
RESUMO O Polietileno (PE) Verde é um polímero sintético que apresenta baixa energia superficial, que resulta em fraca propriedade de adesão. Esta baixa adesão, provoca alguns problemas relativos às aplicações práticas dos polímeros, como fraca aderência de tintas de impressão, revestimentos, adesivos e metais à superfície do polímero, entre outros. Uma maneira de alterar essa propriedade é por meio da aplicação de um tratamento por plasma. Neste sentido, o objetivo deste trabalho foi preparar, via extrusão plana, filmes de biocompósitos com matriz de PE Verde (PEPURO) e carga de argila Vermiculita Expandida (VMT) no teor de 1%. Os filmes foram tratados por plasma em duas condições distintas: sob atmosfera de Oxigênio (O2) (C1); e sob atmosfera correspondendo a mistura de Argônio/Hidrogênio (Ar/H2) e um posterior tratamento por plasma sob atmosfera de O2 (C2). Os resultados indicaram que os tratamentos a plasma e a incorporação de VMT aumentaram a hidrofilicidade dos filmes, sendo que a aplicação da condição 2 (C2) mostrou-se de maneira mais eficiente. O PEPURO não tratado apresentou redução significativa de resistência máxima a tração com a inserção de VMT, já com a aplicação dos tratamentos (C1 e C2) os valores de resistência foram superiores. Em relação à rugosidade foi possível verificar que a aplicação do plasma aumentou a rugosidade na superfície das amostras. Estes resultados indicaram que o aumento da hidrofilicidade e da rugosidade resultaram em um aumento significativo na interação de fluidos com a superfície e também melhora das características adesivas do polímero.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.