We studied the effects of H 2 O 2 oxidation without metal catalysts and under neutral conditions on morphologies and structures of the multiwalled carbon nanotubes (MWNTs). The formation of surface functional groups and changes in nanotube structures, morphology, and thermal stability during oxidation were analysized by X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectra, high-resolution transmission electron microscopy, and thermogravimetric analysis. Several functional groups such as carboxylic (-COOH), carbonyl (-CdO), and hydroxyl (-OH) groups were formed on the surface of MWNTs; however, hydroxyl groups were preferentially formed and reached a maximum atomic concentration of about 46% in 4 days of oxidation. The graphitization degree decreased in the first day of oxidation; however, it readily increased in the continued oxidation days.
Double hydrophilic block copolymers, poly(N-isopropylacrylamide)-b-poly(N-vinylimidazole) (PNIPAM-b-PVim), were successfully prepared with good control via reversible addition−fragmentation chain transfer (RAFT) using PNIPAM-based macromolecular xanthate agents (i.e., MADIX, macromolecular design via the interchange of xanthates). This represents the first preparation of well-defined block copolymers based on PVim, which has been well-known to be able to catalyze esterolysis reactions. The imidazole-containing diblock copolymers molecularly dissolve at low temperatures in water. Above the phase transition temperatures of PNIPAM or in a proper mixture of methanol/water (cononsolvency), the PNIPAM block becomes hydrophobic and stable micelles form with a dense core consisting of a hydrophobic PNIPAM block and a polar PVim shell. The catalytic activities of PNIPAM44 -b-PVim51 and PNIPAM44 -b-PVim21 toward the hydrolysis of p-nitrophenyl acetate (NPA) at different temperatures or methanol/water compositions were then determined using a stopped-flow apparatus and compared to that of PVim homopolymer. The Arrhenius plot for the PVim-based diblock copolymers exhibited a pronounced upward curvature above the critical micellization temperature (cmt). Moreover, in the methanol/water mixture, the catalytic activities of PNIPAM-b-PVim diblock copolymers evolved discontinuously as a function of solvent composition and exhibited a maximum in the range of volume fraction of methanol, φmethanol, between 0.3 and 0.5, corresponding to the solvent composition range where cononsolvency-induced micellization took place. We thus observed for the first time that double hydrophilic block copolymer micelles of PNIPAM-b-PVim can serve as self-catalyzing nanoreactors. Most importantly, the catalytic activities can be well-tuned with external temperature or solvent compositions.
We report a novel strategy for the high-efficiency preparation of macrocyclic diblock copolymers at relatively high concentrations via the combination of supramolecular self-assembly and "selective" click reactions, relying on the fine control of spatial accessibility between terminal reactive groups. The linear precursor, alpha-alkynyl-omega-azido heterodifunctional poly(2-(2-methoxyethoxy)ethyl methacrylate)-b-poly(oligo(ethylene glycol) methyl ether methacrylate), linear-PMEO(2)MA-b-POEGMA-N(3), self-assembles into micelles with PMEO(2)MA cores and POEGMA coronas at elevated temperatures. The spatial separation between reactive alkynyl and azide groups precludes click reactions within micelle entities. On the other hand, due to the unimer-micelle exchange equilibrium and the fact that unimer concentration is typically low (critical micellization concentration, CMC), click reactions occur exclusively for unimers. This eventually led to complete intramolecular cyclization of all linear precursors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.