The mental health level of university students not only directly affects their own growth, but also affects the stability of the campus, which in turn affects the harmony of society and the improvement of the quality of all people. The combination of ideological education and mental health education is an important educational project in contemporary universities. To enhance the quality of psychological health education of college students can promote the overall development of students’ comprehensive quality; the two are closely integrated together, so as to successfully promote the effective combination of ideological education and psychological education, thus realizing the role of ideological education and psychological health education in promoting the physical and mental health development of contemporary college students. This paper explains the technology of data mining and the current situation of the psychological impact of Civic Education on college students and analyzes in depth the feasibility of introducing data mining technology in Civic Education to intervene in the psychological crisis of college students. The results show that the application of the technology provides a new idea for the mental health education of college students and a new way for the construction of a preventive college student mental health education model.
College students’ employment is affected by many factors such as economy and policy, which makes the prediction error of college students’ employment rate large. In order to solve this problem, a prediction method of college students’ employment rate based on the gray system is designed. Firstly, it analyzes the current research status of college students’ employment rate prediction, finds out the causes of errors, then collects the historical data of college students’ employment rate, fits the change characteristics of college students’ employment rate through the gray system, and establishes the prediction model of college students’ employment rate. Finally, the simulation test is realized by using the employment rate data of college students. The results show that the gray system can reflect the change characteristics of college students’ employment rate and obtain high-precision college students’ employment rate prediction results. The prediction error is less than that of other college students’ employment rate prediction methods. We achieved an average accuracy of 95.22% as compared to 92.3% and 87.7% of other proposed systems. The prediction results can provide some reference information for the university employment management department.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.