In order to recognize breast cancer histopathological images, this article proposed a combined model consisting of a pyramid gray level co-occurrence matrix (PGLCM) feature extraction model and an incremental broad learning (IBL) classification model. The PGLCM model is designed to extract the fusion features of breast cancer histopathological images, which can reflect the multiresolution useful information of the images and facilitate the improvement of the classification effect in the later stage. The IBL model is used to improve the classification accuracy by increasing the number of network enhancement nodes horizontally. Unlike deep neural networks, the IBL model compresses the training and testing time cost greatly by making full use of its single-hidden-layer structure. To our knowledge, it is the first attempt for the IBL model to be introduced into the breast cancer histopathological image recognition task. The experimental results in four magnifications of the BreaKHis dataset show that the accuracy of binary classification and eight-class classification outperforms the existing algorithms. The accuracy of binary classification reaches 91.45%, 90.17%, 90.90% and 90.73%, indicating the effectiveness of the established combined model and demonstrating the advantages in breast cancer histopathological image recognition.
Accurate retinal vessel segmentation from fundus images is essential for eye disease diagnosis. Many deep learning methods have shown great performance in this task but still struggle with limited annotated data. To alleviate this issue, we propose an Attention-Guided Cascaded Network (AGC-Net) that learns more valuable vessel features from a few fundus images. Attention-guided cascaded network consists of two stages: the coarse stage produces a rough vessel prediction map from the fundus image, and the fine stage refines the missing vessel details from this map. In attention-guided cascaded network, we incorporate an inter-stage attention module (ISAM) to cascade the backbone of these two stages, which helps the fine stage focus on vessel regions for better refinement. We also propose Pixel-Importance-Balance Loss (PIB Loss) to train the model, which avoids gradient domination by non-vascular pixels during backpropagation. We evaluate our methods on two mainstream fundus image datasets (i.e., DRIVE and CHASE-DB1) and achieve AUCs of 0.9882 and 0.9914, respectively. Experimental results show that our method outperforms other state-of-the-art methods in performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.