A spiking neural network consists of artificial synapses and neurons and may realize human-level intelligence. Unlike the widely reported artificial synapses, the fabrication of large-scale artificial neurons with good performance is still challenging due to the lack of a suitable material system and integration method. Here, we report an ultrathin (less than10 nm) and inch-size two-dimensional (2D) oxide-based artificial neuron system produced by a controllable assembly of solutionprocessed 2D monolayer TiO x nanosheets. Artificial neuron devices based on such 2D TiO x films show a high on/off ratio of 10 9 and a volatile resistance switching phenomenon. The devices can not only emulate the leaky integrate-and-fire activity but also self-recover without additional circuits for sensing and reset. Moreover, the artificial neuron arrays are fabricated and exhibited good uniformity, indicating their large-area integration potential. Our results offer a strategy for fabricating large-scale and ultrathin 2D material-based artificial neurons and 2D spiking neural networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.