An inventory of mercury emissions from anthropogenic activities in China is compiled for the year 1999 from official statistical data. We estimate that China's emissions were 536 (7236) t of total mercury. This value includes open biomass burning, but does not include natural sources or re-emission of previously deposited mercury. Approximately 45% of the Hg comes from non-ferrous metals smelting, 38% from coal combustion, and 17% from miscellaneous activities, of which battery and fluorescent lamp production and cement production are the largest. Emissions are heaviest in Liaoning and Guangdong Provinces, where extensive smelting occurs, and in Guizhou Province, where there is much small-scale combustion of high-Hg coal without emission control devices. Emissions are gridded at 30 Â 30 min spatial resolution. We estimate that 56% of the Hg in China is released as Hg 0 , 32% as Hg 2+ , and 12% as Hg p. Particulate mercury emissions are high in China due to heavy burning of coal in residential and small industrial settings without PM controls. Emissions of Hg 2+ from coal-fired power plants are high due to the absence of flue-gas desulfurization units, which tend to dissolve the soluble divalent mercury. Metals smelting operations favor the production of elemental mercury. Much of the Hg is released from small-scale activities in rather remote areas, and therefore the activity levels are quite uncertain. Also, emissions test data for Chinese sources are lacking, causing uncertainties in Hg emission factors and removal efficiencies. Overall, we calculate an uncertainty level of 744% (95% confidence interval) in the estimate of total emissions. We recommend field testing of coal combustors and smelters in China to improve the accuracy of these estimates.
Abstract. Anthropogenic atmospheric emissions of typical toxic heavy metals have caused worldwide concern due to their adverse effects on human health and the ecosystem. By determining the best available representation of time-varying emission factors with S-shape curves, we establish the multiyear comprehensive atmospheric emission inventories of 12 typical toxic heavy metals (Hg, As, Se, Pb, Cd, Cr, Ni, Sb, Mn, Co, Cu, and Zn) from primary anthropogenic activities in China for the period of 1949–2012 for the first time. Further, we allocate the annual emissions of these heavy metals in 2010 at a high spatial resolution of 0.5° × 0.5° grid with ArcGIS methodology and surrogate indexes, such as regional population and gross domestic product (GDP). Our results show that the historical emissions of Hg, As, Se, Cd, Cr, Ni, Sb, Mn, Co, Cu, and Zn, during the period of 1949–2012, increased by about 22–128 times at an annual average growth rate of 5.1–8.0 %, reaching about 526.9–22 319.6 t in 2012. Nonferrous metal smelting, coal combustion of industrial boilers, brake and tyre wear, and ferrous metal smelting represent the dominant sources of heavy metal emissions. In terms of spatial variation, the majority of emissions are concentrated in relatively developed regions, especially for the northern, eastern, and southern coastal regions. In addition, because of the flourishing nonferrous metal smelting industry, several southwestern and central-southern provinces play a prominent role in some specific toxic heavy metals emissions, like Hg in Guizhou and As in Yunnan. Finally, integrated countermeasures are proposed to minimize the final toxic heavy metals discharge on account of the current and future demand of energy-saving and pollution reduction in China.
The main objective of this study is to investigate the formation and evolution mechanism of the regional haze in megacity Beijing by analyzing the process of a severe haze that occurred 20–27 September 2011. Mass concentration and size distribution of aerosol particles as well as aerosol optical properties were concurrently measured at the Beijing urban atmospheric environment monitoring station. Gaseous pollutants (SO2, NO-NO2-NOx, O3, CO) and meteorological parameters (wind speed, wind direction, and relative humidity) were simultaneously monitored. Meanwhile, aerosol spatial distribution and the height of planetary boundary layer (PBL) were retrieved from the signal of satellite and LIDAR (light detection and ranging). Concentrations of NO, NO2, SO2, O3, and CO observed during 23–27 September had exceeded the national ambient air quality standards for residents. The mass concentration of PM2.5 gradually accumulated during the measurement and reached at 220 μg m−3 on 26 September, and the corresponding atmospheric visibility was only 1.1 km. The daily averaged AOD in Beijing increased from ~ 0.16 at λ = 500 nm on 22 September and reached ~ 3.5 on 26 September. The key factors that affected the formation and evolution of this haze episode were stable anti-cyclone synoptic conditions at the surface, decreasing of the height of PBL, heavy pollution emissions from urban area, number and size evolution of aerosols, and hygroscopic growth for aerosol scattering. This case study may provide valuable information for the public to recognize the formation mechanism of the regional haze event over the megacity, which is also useful for the government to adopt scientific approach to forecast and eliminate the occurrence of regional haze in China
China took aggressive air pollution control measures from 2013 to 2017, leading to the mitigation of atmospheric mercury pollution as a cobenefit. This study is the first to systematically evaluate the effect of five major air pollution control measures in reducing mercury emissions, the total gaseous mercury (TGM) concentration and mercury deposition flux (FLX) for unit emissions reduction. From 2013 to 2017, China’s mercury emissions decreased from 571 to 444 tons, resulting in a 0.29 ng m–3 decrease in the TGM concentration, on average, and in a 17 μg m–2 yr–1 decrease in FLX. Ultralow emission renovations of coal-fired power plants are identified as the most effective emission abatement measure. As a result of this successful measure, coal-fired power plants are no longer the main mercury emitters. In 2017, the cement clinker sector became the largest emitter due to the use of less effective mercury removal measures. However, in terms of the mitigated TGM concentration and FLX levels per unit emission abatement, newly built wet flue gas desulfurization (WFGD) systems in coal-fired industrial boilers have become particularly effective in decreasing FLX levels. Therefore, to effectively reduce atmospheric mercury pollution in China, prioritizing mercury emissions control of cement clinkers and coal-fired industrial boilers is recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.