The use of solid dispersion techniques to modify physicochemical properties and improve solubility and dissolution rate may result in alteration to electrostatic properties of particles. Particle triboelectrification, plays an important part in powder processing, affecting end product quality due to particle deposition and powder loss. This study investigates the use of glucosamine hydrochloride (GLU) in solid dispersions with indomethacin. Solvents selected for the preparation of the dispersions were acetone, acetone-water, ethanol and ethanol-water. Solid state characterizations (DSC, FTIR and XRPD) and dissolution were conducted. Dispersions were subjected to charging using a custom built device based on a shaking concept, consisting of a Faraday cup connected to an electrometer. All dispersions improved the dissolution rate of indomethacin. Analysis showed the method of preparation of the dispersion induced polymorphic forms of the drug. Indomethacin had a high propensity for charging (-411 nC/g). GLU had a very low charge (-1 nC/g). All dispersions had low charges (-1 to 14 nC/g). Acetone as a solvent, or in combination with water, produced samples with an electronegative charge in polarity. The same approach with ethanol produced electropositive charging. The results show the selection of solvents can influence powder charge thereby improving powder handling as well as dissolution properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.