In desert areas, mammals such as camel and goat are exposed to harsh environmental conditions. The ambient temperature (Ta) cycles have been shown to entrain the circadian clock in the camel. In the present work, we assumed that, in the goat living in a desert biotope, Ta cycles would have the same synchronizing effect on the central clock. Therefore, the effects of Ta cycles on body temperature (Tb), locomotor activity (LA) and melatonin (Mel) rhythms as outputs of the master circadian clock have been studied. The study was performed on bucks kept first under constant conditions of total darkness (DD) and constant Ta, then maintained under DD conditions but exposed to Ta cycles with heat period during subjective day and cold period during subjective night. Finally, the Ta cycles were reversed with highest temperatures during the subjective night and the lowest temperatures during the subjective day. Under constant conditions, the circadian rhythms of Tb and LA were free running with an endogenous period of 25.3 and 25.0 hours, respectively. Ta cycles entrained the rhythms of Tb and LA to a period of exactly 24.0 hours; while when reversed, the Ta cycles led to an inversion of Tb and LA rhythms. Similarly, Ta cycles were also able to entrain Mel rhythm, by adjusting its secretion to the cooling phase before and after Ta cycles inversion. All together, these results show that the Ta cycles entrain the master circadian clock in the goat.
BackgroundThe locomotor activity (LA) rhythm, widely studied in rodents, has not been fully investigated in large mammals. This is due to the high cost and the brittleness of the required devices. Alternatively, the locomotion scoring method (SM), consisting of attribution of a score to various levels of activity would be a consistent method to assess the circadian LA rhythm in such species.New methodTo test this, a SM with a score ranging from 0 to 5 has been developed and used in two domestic large mammals, the camel and the goat. One minute interval scoring was performed using visual screening and monitoring of infra-red camera recording videos and carried out by two evaluators.ResultsThe SM provides a clear daily LA rhythm that has been validated using an automate device, the Actiwatch-Mini. The obtained curves and actograms were indeed highly similar to those acquired from the Actiwatch-Mini. Moreover, there were no statistical differences in the period and acrophase. The period was exactly of 24.0h and the acrophases occurred at 12h05 ± 00h03 and 12h14 ± 00h07 for the camel and at 13h13 ± 00h09 and 12h57 ± 00h09 for the goat using SM and Actiwatch-Mini respectively.Comparison with existing methodsCompared to the automatic system, the SM is inexpensive and has the advantage of describing all types of performed movements.ConclusionsThe new developed SM is highly reliable and sufficiently accurate to assess conveniently the LA rhythm and specific behaviors in large mammals. This opens new perspectives to study chronobiology in animal models of desert, tropical and equatorial zones.
In the dromedary camel, a well-adapted desert mammal, daily ambient temperature (Ta)-cycles have been shown to synchronize the central circadian clock. Such entrainment has been demonstrated by examining two circadian outputs, body temperature and melatonin rhythms. Locomotor activity (LA), another circadian output not yet investigated in the camel, may provide further information on such specific entrainment. To verify if daily LA is an endogenous rhythm and whether the desert Ta-cycle can entrain it, six dromedaries were first kept under total darkness and constant-Ta. Results showed that the LA rhythm free runs with a period of 24.8–24.9 h. After having verified that the light–dark cycle synchronizes LA, camels were subjected to a Ta-cycle with warmer temperatures during subjective days and cooler temperatures during subjective nights. Results showed that the free-running LA rhythm was entrained by the Ta-cycle with a period of exactly 24.0 h, while a 12 h Ta-cycle phase advance induced an inversion of the LA rhythm and advanced the acrophase by 9 h. Similarly, activity onset and offset were significantly advanced. All together, these results demonstrate that the Ta-cycle is a strong zeitgeber, able to entrain the camel LA rhythm, hence corroborating previous results concerning the Ta non-photic synchronization of the circadian master clock.
Study Objectives To investigate sleep patterns in the camel by combining behavioural and polysomnography (PSG) methods. Methods A noninvasive PSG study was conducted over four nights on four animals. Additionally, video recordings were used to monitor the sleep behaviours associated with different vigilance states. Results During the night, short periods of sporadic sleep-like behaviour corresponding to a specific posture, sternal recumbency (SR) with the head lying down on the ground, were observed. The PSG results showed rapid shifts between five vigilance states, including wakefulness, drowsiness, REM sleep, NREM sleep, and rumination. The camels typically slept only 1.7 hours per night, subdivided into 0.5 hours of REM sleep and 1.2 hours of NREM sleep. Camels spent most of the night either awake (2.3 hours), ruminating (2.4 hours) or drowsing (1.9 hours). Various combinations of transitions between the different vigilance states were observed, with a notable transition into REM sleep directly from drowsiness (9%) or wakefulness (4%). Behavioural postures were found to correlate with PSG vigilance states, thereby allowing a reliable prediction of the sleep stage based on SR and the head position (erected, motionless or lying down on the ground). Notably, 100% of REM sleep occurred during the head lying down-SR posture. Conclusions The camel is a diurnal species with a polyphasic sleep pattern at night. The best correlation between PSG and ethogram data indicates that sleep duration can be predicted by the behavioural method, provided that drowsiness is considered a part of sleep.
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.