Allali KE, Achaâban MR, Bothorel B, Piro M, Bouâouda H, Allouchi ME, Ouassat M, Malan A, Pévet P. Entrainment of the circadian clock by daily ambient temperature cycles in the camel (Camelus dromedarius). Am J Physiol Regul Integr Comp Physiol 304: R1044 -R1052, 2013. First published March 13, 2013 doi:10.1152/ajpregu.00466.2012.-In mammals the light-dark (LD) cycle is known to be the major cue to synchronize the circadian clock. In arid and desert areas, the camel (Camelus dromedarius) is exposed to extreme environmental conditions. Since wide oscillations of ambient temperature (Ta) are a major factor in this environment, we wondered whether cyclic Ta fluctuations might contribute to synchronization of circadian rhythms. The rhythm of body temperature (Tb) was selected as output of the circadian clock. After having verified that Tb is synchronized by the LD and free runs in continuous darkness (DD), we submitted the animals to daily cycles of Ta in LL and in DD. In both cases, the Tb rhythm was entrained to the cycle of Ta. On a 12-h phase shift of the Ta cycle, the mean phase shift of the Tb cycle ranged from a few hours in LD (1 h by cosinor, 4 h from curve peaks) to 7-8 h in LL and 12 h in DD. These results may reflect either true synchronization of the central clock by Ta daily cycles or possibly a passive effect of Ta on Tb. To resolve the ambiguity, melatonin rhythmicity was used as another output of the clock. In DD melatonin rhythms were also entrained by the T a cycle, proving that the daily T a cycle is able to entrain the circadian clock of the camel similar to photoperiod. By contrast, in the presence of a LD cycle the rhythm of melatonin was modified by the T a cycle in only 2 (or 3) of 7 camels: in these specific conditions a systematic effect of T a on the clock could not be evidenced. In conclusion, depending on the experimental conditions (DD vs. LD), the daily T a cycle can either act as a zeitgeber or not.camel; circadian clock; body temperature; daily ambient temperature; melatonin; nonphotic entrainment RHYTHMICITY in physiological processes is a fundamental property of all living organisms (32). A number of biological functions display daily and seasonal variations in a way to anticipate and adapt to the upcoming cycling changes in environment (light, temperature, food availability, etc.). In mammals, the circadian clock, located in the suprachiasmatic nuclei of the hypothalamus (SCN), is central for these adaptive processes. This clock is a strong autonomous oscillator cycling with a period close to 24 h under constant conditions (23) and entrained by environmental cues to an exact period of 24 h. Thus SCN play a pivotal role to control numerous circadian biological rhythms such as those of body temperature (T b ), melatonin, or behavioral features. In all mammals studied, the light-dark cycle is the most powerful synchronizer (zeitgeber) of the master clock (for a review see Ref. 15). T b rhythm represents a robust output of the clock, widely used in clinical research to determine pro...
In the present work, we have studied daily rhythmicity of body temperature (Tb) in Arabian camels challenged with daily heat, combined or not with dehydration. We confirm that Arabian camels use heterothermy to reduce heat gain coupled with evaporative heat loss during the day. Here, we also demonstrate that this mechanism is more complex than previously reported, because it is characterized by a daily alternation (probably of circadian origin) of two periods of poikilothermy and homeothermy. We also show that dehydration induced a decrease in food intake plays a role in this process. Together, these findings highlight that adaptive heterothermy in the Arabian camel varies across the diurnal light–dark cycle and is modulated by timing of daily heat and degrees of water restriction and associated reduction of food intake. The changed phase relationship between the light–dark cycle and the Tb rhythm observed during the dehydration process points to a possible mechanism of internal desynchronization during the process of adaptation to desert environment. During these experimental conditions mimicking the desert environment, it will be possible in the future to determine if induced high‐amplitude ambient temperature (Ta) rhythms are able to compete with the zeitgeber effect of the light–dark cycle.
Seasonal changes in the pattern of plasma melatonin were investigated in two groups of camels (Camelus dromedarius): 11 adult and six young camels. Animals were subjected to the outdoor conditions of a desert environment. Blood samples were taken at regular intervals of about 3 hr (added to particular samples at 1 hr before then 30 min and 1 hr after sunset, and 1 hr before and 1 hr after sunrise) for 24 hr at both solstices and equinoxes of the year. The plasma melatonin levels steeply increased soon after sunset and remained elevated throughout all the night. Then, melatonin concentrations progressively declined shortly before sunrise and returned to daytime basal levels 1 hr later. There was no seasonal variation in the amplitude or in the offset of the melatonin peak or in the daytime basal levels. The onset of the nocturnal peak was delayed by 2 hr in June at the summer solstice (P < 0.05), which can be related to the changes in night length between the two solstices. A significant effect of age was observed in all seasons. Melatonin levels were higher in the young camel group (fall equinox: P < 0.001; spring equinox: P < 0.01; winter solstice: P < 0.01; summer solstice: P < 0.05). The pattern of melatonin secretion in the camel showed a significant seasonal variation parallel to the photoperiodic changes of the year. The observed decline of melatonin levels during an extra-light pulse in the middle of the night indicates the light control of melatonin synthesis. It is not yet known if, in this low latitude desert region, the seasonal breeding period of the camel is cued by the photoperiod. The data obtained, however, clearly demonstrate that the camel has the capacity to follow and to integrate photoperiodic changes through melatonin changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.