The age, sex, liveweight and body measurements (heart girth, umbilical girth, height, length from elbow to tuber ischii and circumference of the foreleg cannon bone) of 516 donkeys used to transport goods in Morocco were recorded. There were few donkeys over 12 years of age. For adult donkeys weighing from 74 to 252 kg, the best equation with only one variable for predicting liveweight was: liveweight (kg) = heart girth (cm)2.65/2188. The inclusion of two variables improved the prediction marginally, but the addition of further variables gave little further improvement. The best prediction equation for adult donkeys was: liveweight (kg) = (heart girth [cm]2.12 x length [cm]0.688)/380. For donkeys under three years of age, weighing from 52 to 128 kg, the best prediction equation was: liveweight (kg) = (umbilical girth [cm]1.41 x length [cm]1.09)/1000. Other liveweight prediction equations for donkeys and horses were tested on the data and tended to overestimate the weight of these working donkeys. A subjective method for assessing the body condition of the donkeys was developed, using a scale from 1 (emaciated) to 9 (obese).
Allali KE, Achaâban MR, Bothorel B, Piro M, Bouâouda H, Allouchi ME, Ouassat M, Malan A, Pévet P. Entrainment of the circadian clock by daily ambient temperature cycles in the camel (Camelus dromedarius). Am J Physiol Regul Integr Comp Physiol 304: R1044 -R1052, 2013. First published March 13, 2013 doi:10.1152/ajpregu.00466.2012.-In mammals the light-dark (LD) cycle is known to be the major cue to synchronize the circadian clock. In arid and desert areas, the camel (Camelus dromedarius) is exposed to extreme environmental conditions. Since wide oscillations of ambient temperature (Ta) are a major factor in this environment, we wondered whether cyclic Ta fluctuations might contribute to synchronization of circadian rhythms. The rhythm of body temperature (Tb) was selected as output of the circadian clock. After having verified that Tb is synchronized by the LD and free runs in continuous darkness (DD), we submitted the animals to daily cycles of Ta in LL and in DD. In both cases, the Tb rhythm was entrained to the cycle of Ta. On a 12-h phase shift of the Ta cycle, the mean phase shift of the Tb cycle ranged from a few hours in LD (1 h by cosinor, 4 h from curve peaks) to 7-8 h in LL and 12 h in DD. These results may reflect either true synchronization of the central clock by Ta daily cycles or possibly a passive effect of Ta on Tb. To resolve the ambiguity, melatonin rhythmicity was used as another output of the clock. In DD melatonin rhythms were also entrained by the T a cycle, proving that the daily T a cycle is able to entrain the circadian clock of the camel similar to photoperiod. By contrast, in the presence of a LD cycle the rhythm of melatonin was modified by the T a cycle in only 2 (or 3) of 7 camels: in these specific conditions a systematic effect of T a on the clock could not be evidenced. In conclusion, depending on the experimental conditions (DD vs. LD), the daily T a cycle can either act as a zeitgeber or not.camel; circadian clock; body temperature; daily ambient temperature; melatonin; nonphotic entrainment RHYTHMICITY in physiological processes is a fundamental property of all living organisms (32). A number of biological functions display daily and seasonal variations in a way to anticipate and adapt to the upcoming cycling changes in environment (light, temperature, food availability, etc.). In mammals, the circadian clock, located in the suprachiasmatic nuclei of the hypothalamus (SCN), is central for these adaptive processes. This clock is a strong autonomous oscillator cycling with a period close to 24 h under constant conditions (23) and entrained by environmental cues to an exact period of 24 h. Thus SCN play a pivotal role to control numerous circadian biological rhythms such as those of body temperature (T b ), melatonin, or behavioral features. In all mammals studied, the light-dark cycle is the most powerful synchronizer (zeitgeber) of the master clock (for a review see Ref. 15). T b rhythm represents a robust output of the clock, widely used in clinical research to determine pro...
In the present work, we have studied daily rhythmicity of body temperature (Tb) in Arabian camels challenged with daily heat, combined or not with dehydration. We confirm that Arabian camels use heterothermy to reduce heat gain coupled with evaporative heat loss during the day. Here, we also demonstrate that this mechanism is more complex than previously reported, because it is characterized by a daily alternation (probably of circadian origin) of two periods of poikilothermy and homeothermy. We also show that dehydration induced a decrease in food intake plays a role in this process. Together, these findings highlight that adaptive heterothermy in the Arabian camel varies across the diurnal light–dark cycle and is modulated by timing of daily heat and degrees of water restriction and associated reduction of food intake. The changed phase relationship between the light–dark cycle and the Tb rhythm observed during the dehydration process points to a possible mechanism of internal desynchronization during the process of adaptation to desert environment. During these experimental conditions mimicking the desert environment, it will be possible in the future to determine if induced high‐amplitude ambient temperature (Ta) rhythms are able to compete with the zeitgeber effect of the light–dark cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.