Granulocyte-macrophage colony-stimulating factor (GM-CSF) and erythropoietin (Epo) are hematopoietic growth factors that regulate proliferation and differentiation of hematopoietic cells. They elicit and control a cascade of biochemical events, the earliest of which is tyrosine phosphorylation of several cellular proteins. Grb2/Ash is composed of SH2 and SH3 domains. The SH2 domain binds to tyrosine-phosphorylated proteins, and the SH3 domains bind to proteins containing proline-rich regions. It is considered that Grb2/Ash functions as an adapter protein linking tyrosine kinases and Ras in downstream of receptors for growth factors in fibroblasts. However, the mechanisms of signal transduction through Grb2/Ash and the roles of proteins associated with Grb2/Ash remain to be determined in hematopoietic cells. By means of the binding experiments using the glutathione S-transferase fusion protein including the full-length Grb2/Ash, we have found that Shc and unidentified 130- and 135-kDa proteins are associated with Grb2/Ash and that they are tyrosine phosphorylated by treatment with GM-CSF or Epo in a human leukemia cell line, UT-7. We have purified the 130-kDa protein (pp130) using the glutathione S-transferase-Grb2/Ash affinity column. The amino acid sequence analysis of the three peptides derived from the in situ protease digestion of the purified pp130 showed that the pp130 was identical to the human c-cbl proto-oncogene product (c-Cbl). c-Cbl constitutively binds to the SH3 domain of Grb2/Ash both in vitro and in vivo but not to the SH2 domain of Grb2/Ash, and the binding of Grb2/Ash to c-Cbl or Sos was not altered by GM-CSF stimulation. Moreover, c-Cbl (pp130) becomes tyrosine phosphorylated rapidly and transiently depending on GM-CSF or Epo stimulation. These findings strongly suggest that c-Cbl is implicated in the signal transduction of GM-CSF or Epo in hematopoietic cells and that c-Cbl is involved in another signaling pathway different from the Ras signaling pathway.
The peroxisome proliferator-activated receptors (PPARs) are dietary lipid sensors that regulate fatty acid and carbohydrate metabolism. The hypolipidemic effects of fibrate drugs and the therapeutic benefits of the thiazolidinedione drugs are due to their activation of PPAR␣ and -␥, respectively. In this study, isohumulones, the bitter compounds derived from hops that are present in beer, were found to activate PPAR␣ and -␥ in transient co-transfection studies. Among the three major isohumulone homologs, isohumulone and isocohumulone were found to activate PPAR␣ and -␥. Diabetic KK-A y mice that were treated with isohumulones (isohumulone and isocohumulone) showed reduced plasma glucose, triglyceride, and free fatty acid levels (65.3, 62.6, and 73.1%, respectively, for isohumulone); similar reductions were found following treatment with the thiazolidinedione drug, pioglitazone. Isohumulone treatment did not result in significant body weight gain, although pioglitazone treatment did increase body weight (10.6% increase versus control group). C57BL/6N mice fed a high fat diet that were treated with isohumulones showed improved glucose tolerance and reduced insulin resistance. Furthermore, these animals showed increased liver fatty acid oxidation and a decrease in size and an increase in apoptosis of their hypertrophic adipocytes. A double-blind, placebo-controlled pilot study for studying the effect of isohumulones on diabetes suggested that isohumulones significantly decreased blood glucose and hemoglobin A1c levels after 8 weeks (by 10.1 and 6.4%, respectively, versus week 0). These results suggest that isohumulones can improve insulin sensitivity in high fat diet-fed mice with insulin resistance and in patients with type 2 diabetes.
The small GTPase Rho and one of its targets, Rhoassociated kinase (Rho-kinase), are implicated in a wide spectrum of cellular functions, including cytoskeletal rearrangements, transcriptional activation and smooth muscle contraction. Since Rho also plays an essential role in cytokinesis, Rho-kinase may possibly mediate some biological aspects of cytokinesis. Here, using a series of monoclonal antibodies that can speci®cally recognize distinct phosphorylated sites on glial ®brillary acidic protein (GFAP) and vimentin, phosphorylation sites by Rho-kinase in vitro were revealed to be identical to in vivo phosphorylation sites on these intermediate ®lament (IF) proteins at the cleavage furrow in dividing cells. We then found, by preparing two types of antiRho-kinase antibodies, that Rho-kinase accumulated highly and circumferentially at the cleavage furrow in various cell lines. This subcellular distribution during cytokinesis was very similar to that of ezrin/radixin/ moesin (ERM) proteins and Ser 19 -phosphorylated myosin light chain. These results raise the possibility that Rhokinase might be involved in the formation of the contractile ring by modulating these F-actin-binding proteins during cytokinesis and in the phosphorylation and regulation of IF proteins at the cleavage furrow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.