We scanned throughout chromosome 21 to assess genetic associations with late-onset Alzheimer disease (AD) using 374 Japanese patients and 375 population-based controls, because trisomy 21 is known to be associated with early deposition of beta-amyloid (Abeta) in the brain. Among 417 markers spanning 33 Mb, 22 markers showed associations with either the allele or the genotype frequency (P < 0.05). Logistic regression analysis with age, sex and apolipoprotein E (APOE)-epsilon4 dose supported genetic risk of 17 markers, of which eight markers were linked to the SAMSN1, PRSS7, NCAM2, RUNX1, DYRK1A and KCNJ6 genes. In logistic regression, the DYRK1A (dual-specificity tyrosine-regulated kinase 1A) gene, located in the Down syndrome critical region, showed the highest significance [OR = 2.99 (95% CI: 1.72-5.19), P = 0.001], whereas the RUNX1 gene showed a high odds ratio [OR = 23.3 (95% CI: 2.76-196.5), P = 0.038]. DYRK1A mRNA level in the hippocampus was significantly elevated in patients with AD when compared with pathological controls (P < 0.01). DYRK1A mRNA level was upregulated along with an increase in the Abeta-level in the brain of transgenic mice, overproducing Abeta at 9 months of age. In neuroblastoma cells, Abeta induced an increase in the DYRK1A transcript, which also led to tau phosphorylation at Thr212 under the overexpression of tau. Therefore, the upregulation of DYRK1A transcription results from Abeta loading, further leading to tau phosphorylation. Our result indicates that DYRK1A could be a key molecule bridging between beta-amyloid production and tau phosphorylation in AD.
Gene amplification using polymerase chain reaction (PCR) was carried out on DNA samples from a total of 92 normal subjects and 52 subjects with myotonic dystrophy (DM) from European and Japanese populations, to determine the copy number of the CTG repeat associated with DM for each group. In the two populations, the number of repeats on normal chromosomes only were compared, as CTG copy number on DM chromosomes was difficult to determine by PCR alone. In this study, normal chromosomes were found which had as many as 35 copies of the repeat, which is larger than the normal range reported previously but still does not overlap with the repeat number associated with DM pathology, which is at least 50 copies. Using data from normal chromosomes from unrelated subjects, the frequencies of five, 11, and 13 copies of the CTG repeat were found to be significantly different between the two populations, with five and 11 copies more commonly seen in the European population and 13 copies in the Japanese population. This difference may be the result of natural divergence of the normal chromosomes between the population groups.
Background/Aim: Brain-derived neurotrophic factor (BDNF) is associated with the hippocampus and the nigrostriatal dopaminergic function. Data showing that its level was reduced in Alzheimer’s disease (AD) and Parkinson’s disease (PD) suggested that the BDNF function must play an important role in the pathogenetics of these diseases. Indeed, variation in the BDNF gene may confer susceptibility to AD and PD development. Recently, a functional BDNF Val66Met polymorphism has been found to be associated with episodic memory and hippocampal function, with intracellular trafficking, and with activity-dependent secretion of BDNF. To date, there have been several conflicting reports on the correlation between AD or PD and Val66Met or C270T polymorphism in the BDNF promoter region, although no data on this relationship have been published with respect to dementia with Lewy bodies (DLB). In the present study, we investigated a possible association between such BDNF polymorphisms and susceptibility to AD or DLB. Methods:BDNF genotyping was carried out by the polymerase chain reaction-restriction fragment length polymorphism method in autopsy-confirmed human samples. Results and Conclusion: On comparing patients and controls, the distribution of BDNF genotypes and alleles did not differ significantly. Our findings suggest that it is unlikely that these BDNF polymorphisms play a major role in the pathogenesis of AD and DLB in the Japanese population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.