Patients with obstructive sleep apnea (OSA) have a high prevalence of atrial fibrillation (AF). Rivaroxaban, a coagulation factor Xa inhibitor, has recently been reported to show pleiotropic effects. This study investigated the influence of rivaroxaban on cardiac remodeling caused by intermittent hypoxia (IH). Male C57BL/6J mice were exposed to IH (repeated cycles of 5% oxygen for 1.5 min followed by 21% oxygen for 5 min) for 28 days with/without rivaroxaban (12 mg/kg/day) or FSLLRY, a protease-activated receptor (PAR)-2 antagonist (10 μg/kg/day). IH caused endothelial cell degeneration in the small arteries of the right atrial myocardium and increased the level of %fibrosis and 4-hydroxy-2-nonenal protein adducts in the left ventricular myocardium. IH also increased the expression of PAR-2 as well as the phosphorylation of extracellular signal-regulated kinase (ERK)-1/2 and nuclear factor-kappa B (NF-κB) were increased in human cardiac microvascular endothelial cells. However, rivaroxaban and FSLLRY significantly suppressed these changes. These findings demonstrate that rivaroxaban attenuates both atrial and ventricular remodeling induced by IH through the prevention of oxidative stress and fibrosis by suppressing the activation of ERK and NF-κB pathways via PAR-2. Treatment with rivaroxaban could potentially become a novel therapeutic strategy for cardiac remodeling in patients with OSA and AF.
The protein binding rates (PBR) of platinum‐containing agents cisplatin (CDDP), carboplatin (CBDCA) and oxaliplatin (L‐OHP) have been reported as 98%, 25–50% and 98%, respectively. To investigate the protein‐binding properties of albumin with cisplatin, carboplatin and oxaliplatin, inductively coupled plasma mass spectrometry (ICP‐MS) was used to measure their plasma concentration in rats over time. The study also examined the effects of cisplatin, carboplatin and oxaliplatin‐binding on albumin in vitro, using CD spectrometry and native‐polyacrylamide gel electrophoresis (native PAGE). The ratios of PBR to irreversible PBR, of cisplatin and oxaliplatin were 98%:98% and 90%:87%, respectively, indicating a higher affinity for irreversible binding with albumin. That of carboplatin was 25%:10%, indicating 60–70% reversible binding with albumin. The plasma protein binding rate concentrations of cisplatin, carboplatin and oxaliplatin after in vivo administration were 96%, 15% and 80%, respectively. The CD spectrometry of albumin was unaffected by cisplatin, carboplatin and oxaliplatin binding. Though similar protein binding rates were observed with oxaliplatin and cisplatin, oxaliplatin had a higher mobility rate during PAGE. It was confirmed that the binding of cisplatin and oxaliplatin with albumin affected its electric charge but not the structure. In conclusion, cisplatin and oxaliplatin bind irreversibly with albumin in plasma and may irreversibly interact with tissue protein and/or DNA. The difficulties involved with predicting the tissue concentrations of cisplatin and oxaliplatin from their plasma concentration inhibits their therapeutic drug monitoring. On the contrary, carboplatin, like some generic drugs, reversibly binds to plasma proteins. It is, therefore, possible to conduct therapeutic drug monitoring for carboplatin.
1. Drug-induced liver injury is difficult to predict at the pre-clinical stage. This study aimed to clarify the roles of caspase-8 and -9 in CYP2E1 metabolite-induced liver injury in both rats and cell cultures in vitro treated with carbon tetrachloride (CCl), halothane or sevoflurane. The human hepatocarcinoma functional liver cell line was maintained in 3-dimensional culture alone or in co-culture with human acute monocytic leukemia cells. 2. In vivo, laboratory indices of liver dysfunction and histology were normal after administration of sevoflurane. CCl treatment increased blood AST/ALT levels, liver caspase-3 and -9 activities and liver malondialdehyde, accompanied by centrilobular hepatocyte necrosis. Halothane increased AST/ALT levels, caspase-3 and -8 activities (but not malondialdehyde) concomitant with widespread hepatotoxicity. In vitro, CCl treatment increased caspase-9 activity and decreased both mitochondrial membrane potential (MMP) and cell viability. In co-culture, halothane increased caspase-8 activity and decreased MMP and cellular viability. There were no toxic responses in CYP2E1 knockdown in monoculture and co-culture. 3. CYP2E1-inducing compounds play a pivotal role in halogenated hydrocarbon toxicity. 4. Changes in hepatocyte caspase-8 and -9 activities could be novel biomarkers of metabolites causing DILI, and in pre-clinical development of new pharmaceuticals can predict nascent DILI in the clinical stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.