Subarachnoid hemorrhage (SAH) by a rupture of cerebral aneurysms remains the most devastating cerebrovascular disease. Early brain injury (EBI) is increasingly recognized to be the primary determinant for poor outcomes, and also considered to cause delayed cerebral ischemia (DCI) after SAH. Both clinical and experimental literatures emphasize the impact of global cerebral edema in EBI as negative prognostic and direct pathological factors. The nature of the global cerebral edema is a mixture of cytotoxic and vasogenic edema, both of which may be caused by post‐SAH induction of tenascin‐C (TNC) that is an inducible, non‐structural, secreted and multifunctional matricellular protein. Experimental SAH induces TNC in brain parenchyma in rats and mice. TNC knockout suppressed EBI in terms of brain edema, blood‐brain barrier disruption, neuronal apoptosis and neuroinflammation, associated with the inhibition of post‐SAH activation of mitogen‐activated protein kinases and nuclear factor‐kappa B in mice. In a clinical setting, more severe SAH increases more TNC in cerebrospinal fluid and peripheral blood, which could be a surrogate marker of EBI and predict DCI development and outcomes. In addition, cilostazol, a selective inhibitor of phosphodiesterase type III that is a clinically available anti‐platelet agent and is known to suppress TNC induction, dose‐dependently inhibited delayed cerebral infarction and improved outcomes in a pilot clinical study. Thus, further studies may facilitate application of TNC as biomarkers for non‐invasive diagnosis or assessment of EBI and DCI, and lead to development of a molecular target drug against TNC, contributing to the improvement of post‐SAH outcomes.
Background and Purpose—
Plasma levels of galectin-3—a matricellular protein—are increased after aneurysmal subarachnoid hemorrhage (SAH), but the functional significance remains undetermined. This study was conducted to evaluate whether modified citrus pectin (MCP; galectin-3 inhibitor) prevents post-SAH early brain injury, focusing on blood-brain barrier disruption.
Methods—
C57BL/6 male adult mice (n=251) underwent sham or filament perforation SAH modeling, followed by a random intracerebroventricular injection of vehicle or drug at 30 minutes post-modeling. First, vehicle-treated and 0.8, 4, 16, or 32 µg MCP-treated mice were assessed by neuroscore and brain water content at 24 and 48 hours post-modeling. Second, Evans blue extravasation, Western blotting, coimmunoprecipitation and immunostaining were performed in vehicle-treated or 4 µg MCP-treated mice at 24 hours post-modeling. Third, vehicle or R-galectin-3 (recombinant galectin-3) was administered to SAH mice simultaneously with vehicle or MCP, and neuroscore and Evans blue extravasation were evaluated at 24 hours post-modeling. Fourth, vehicle or R-galectin-3 was administered to MCP-treated SAH mice at 24 hours, and neuroscore and IgG immunostaining were evaluated at 48 hours post-SAH.
Results—
Among tested dosages, 4 µg MCP showed the best neuroprotective effects as to preventing neurological impairments and brain edema at 24 to 48 hours post-SAH. Four micrograms MCP attenuated post-SAH blood-brain barrier disruption and galectin-3 upregulation in brain capillary endothelial cells, associated with inactivation of ERK (extracellular signal-related kinase) 1/2, STAT (signal transducer and activator of transcription)-3, and MMP (matrix metalloproteinase)-9, and the consequent preservation of a tight junction protein ZO-1 (zonula occludens-1). Coimmunoprecipitation assay demonstrated physical interactions between galectin-3 and TLR (Toll-like receptor) 4. R-galectin-3 blocked the neuroprotective effects of MCP.
Conclusions—
MCP prevents post-SAH blood-brain barrier disruption possibly by inhibiting galectin-3, of which the mechanisms may include binding to TLR4 and activating ERK1/2, STAT-3, and MMP-9. This study suggests galectin-3 to be a novel therapeutic target against post-SAH early brain injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.