Mononuclear copper(II)-superoxo complexes 2(X)-OO(*) having triplet (S = 1) ground states were obtained via reaction of O(2) with the copper(I) starting materials 1(X) supported by tridentate ligands L(X) [1-(2-p-X-phenethyl)-5-(2-pyridin-2-ylethyl)-1,5-diazacyclooctane; X = CH(3), H, NO(2)] in various solvents. The superoxo complexes 2(X)-OO(*) mimic the structure [tetrahedral geometry with an end-on (eta(1))-bound O(2)(*-)] and the aliphatic C-H bond activation chemistry of peptidylglycine alpha-hydroxylating monooxygenase and dopamine beta-monooxygenase.
Selective hydroxylation of benzene to phenol has been achieved using H2O2 in the presence of a catalytic amount of the nickel complex [Ni(II)(tepa)](2+) (2) (tepa = tris[2-(pyridin-2-yl)ethyl]amine) at 60 °C. The maximum yield of phenol was 21% based on benzene without the formation of quinone or diphenol. In an endurance test of the catalyst, complex 2 showed a turnover number (TON) of 749, which is the highest value reported to date for molecular catalysts in benzene hydroxylation with H2O2. When toluene was employed as a substrate instead of benzene, cresol was obtained as the major product with 90% selectivity. When H2(18)O2 was utilized as the oxidant, (18)O-labeled phenol was predominantly obtained. The reaction rate for fully deuterated benzene was nearly identical to that of benzene (kinetic isotope effect = 1.0). On the basis of these results, the reaction mechanism is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.