In patients with aortic aneurysms, ultra-high-resolution CT with 0.25-mm slices significantly improves visualization of the artery of Adamkiewicz compared to 0.5-mm slices.
Purpose
The purpose of this prospective study was to evaluate radiation-induced myocardial damage after mediastinal radiation therapy (RT) using late gadolinium-enhancement (LGE) magnetic resonance imaging (MRI).
Methods and Materials
We enrolled 19 patients with esophageal cancer who were expected to have long-term survival by definitive treatment. They underwent delayed contrast-enhanced MRI (19 patients before treatment, 19 patients 6 months after treatment, and 12 patients 1.5 years after treatment). Dose distribution of the left ventricle was made using computed tomography, and the dose volume histogram of the left ventricle was calculated. Myocardial signal intensities in individual MRIs were normalized by the mean values in regions receiving low doses (<5 Gy). Changes in the normalized signal intensities after mediastinal radiation therapy were compared among regions where irradiation doses were 0 to 10 Gy, 10 to 20 Gy, 20 to 30 Gy, 30 to 40 Gy, 40 to 50 Gy, and 50 to 60 Gy, and we investigated whether intensity change was detected in a dose-dependent manner.
Results
The registered patients were treated with concurrent chemoradiotherapy with a median total dose of 60 Gy (50.4-66 Gy). Chemotherapy consisting of cisplatin and 5-fluorouracil was administered. In the population-based dose-response curve, dose-dependent intensity changes progressively increased in regions receiving more than 30 Gy. The averages of relative intensity change at 6 months and 1.5 years after treatment were 1.1% and −1.9% at 20 to 30 Gy and 37.5% and 17.5% at 40 to 50 Gy, respectively. LGE in regions receiving more than 30 Gy was detected in 68% (13/19) of the patients.
Conclusions
A dose-dependent relationship for myocardial signal intensity change was found by using LGE MRI. It may be necessary to reduce the volume of the myocardium receiving more than 30 Gy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.