We evaluated the accuracy of one commercially available and three publicly available deformable image registration (DIR) algorithms for thoracic four-dimensional (4D) computed tomography (CT) images. Five patients with esophagus cancer were studied. Datasets of the five patients were provided by DIR-lab (dir-lab.com) and consisted of thoracic 4D CT images and a coordinate list of anatomical landmarks that had been manually identified. Expert landmark correspondence was used for evaluating DIR spatial accuracy. First, the manually measured displacement vector field (mDVF) was obtained from the coordinate list of anatomical landmarks. Then the automatically calculated displacement vector field (aDVF) was calculated by using the following four DIR algorithms: B-spine implemented in Velocity AI (Velocity Medical, Atlanta, GA, USA), free-form deformation (FFD), Horn–Schunk optical flow (OF) and Demons in DIRART of MATLAB software. Registration error is defined as the difference between mDVF and aDVF. The mean 3D registration errors were 2.7 ± 0.8 mm for B-spline, 3.6 ± 1.0 mm for FFD, 2.4 ± 0.9 mm for OF and 2.4 ± 1.2 mm for Demons. The results showed that reasonable accuracy was achieved in B-spline, OF and Demons, and that these algorithms have the potential to be used for 4D dose calculation, automatic image segmentation and 4D CT ventilation imaging in patients with thoracic cancer. However, for all algorithms, the accuracy might be improved by using the optimized parameter setting. Furthermore, for B-spline in Velocity AI, the 3D registration error was small with displacements of less than ∼10 mm, indicating that this software may be useful in this range of displacements.
Deformable image registration-based voxel-wise analysis demonstrated a spatial correlation between (18)F-BPA and (18)F-FDG uptakes in the head and neck cancer. A tumor sub-volume with a high (18)F-FDG uptake may predict high accumulation of (18)F-BPA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.