Transverse microradiography (TMR) is considered as the gold standard technique for the evaluation of enamel lesions. Micro-computed tomography (µCT) has the advantage of non-destructive measurements, but the beam-hardening effect with polychromatic x-rays is a major drawback. To date, no study has validated µCT against TMR. The objective of this study was to validate µCT measurements of enamel lesions under various x-ray conditions and software beam-hardening correction (BHC) against TMR. Human molars with natural white-spot lesions were scanned for 5 min by µCT at 100 kV in different conditions: 50 µA (0.5-mm Al filter), 165 µA (0.5-mm Al/0.3-mm Cu), and 200 µA (0.5-mm Al/0.4-mm Cu), with or without BHC. Grayscale values were converted into mineral density values using phantoms. Thin sections at the same positions were then prepared for TMR. Lesion depth (LD; µm) and mineral loss (ΔZ; vol%µm) were compared between µCT and TMR by Pearson's correlations. µCT measurements correlated well with TMR under all conditions (p < 0.001, r > 0.86 for LD and ΔZ), except for 0.5-mm Al without BHC (p > 0.05). Even without BHC, combined Al/Cu filters successfully reduced the beam-hardening effect. µCT can be used as a non-destructive alternative to TMR with comparable parameters for the study of enamel lesions.
A technology to characterize early enamel lesions is needed in dentistry. Optical coherence tomography (OCT) is a noninvasive method that provides high-resolution cross-sectional images. The aim of this study is to compare OCT with microfocus x-ray computed tomography ([Formula: see text]) for assessment of natural enamel lesions in vitro. Ten human teeth with visible white spot-like changes on the enamel smooth surface and no cavitation (ICDAS code 2) were subjected to imaging by μCT (SMX-100CT, Shimadzu) and 1300-nm swept-source OCT (Dental SS-OCT, Panasonic Health Care). In [Formula: see text], the lesions appeared as radiolucent dark areas, while in SS-OCT, they appeared as areas of increased signal intensity beneath the surface. An SS-OCT attenuation coefficient based on Beer-Lambert law could discriminate lesions from sound enamel. Lesion depth ranged from 175 to [Formula: see text] in SS-OCT. A correlation between [Formula: see text] and SS-OCT was found regarding lesion depth ([Formula: see text], [Formula: see text]) and also surface layer thickness ([Formula: see text], [Formula: see text]). The images obtained clinically in real time using the dental SS-OCT system are suitable for the assessment of natural subsurface lesions and their surface layer, providing comparable images to a laboratory high-resolution [Formula: see text] without the use of x-ray.
The aim of this study was to assess the effect of chewing gum containing phosphoryl oligosaccharides of calcium (POs-Ca) and a low concentration of fluoride (F) on the hardness of enamel subsurface lesions, utilizing a double-blind, randomized, and controlled in situ model. Fifteen individuals wore removable lingual appliances with 3 bovine-enamel insets containing subsurface demineralized lesions. Three times a day for 14 days, they chewed one of the 3 chewing gums (placebo, POs-Ca, POs-Ca+F). After the treatment period, cross-sectional mineral content, nanoindentation hardness, and fluoride ion mapping by time-of-flight secondary ion mass spectrometry (TOF-SIMS) were evaluated. Although there were no statistical differences in overall mineral content and hardness recovery rates between POs-Ca and POs-Ca+F subsurface lesions (p > 0.05), nanoindentation at 1-μm distance increments from the surface showed statistical differences in hardness recovery rate between POs-Ca and POs-Ca+F in the superficial 20-μm region (p < 0.05). Fluoride mapping revealed distribution of the ion up to 20 μm from the surface in the POs-Ca+F group. Nanoindentation and TOF-SIMS results highlighted the benefits of bioavailability of fluoride ion on reinforcement of the superficial zone of subsurface lesions in situ (NCT01377493).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.