OBJECTIVEThe optimal surgical treatment for acute subdural hemorrhage (ASDH) remains controversial. The purpose of this study was to compare outcomes in patients who underwent craniotomy with those in patients who underwent decompressive craniectomy for the treatment of ASDH.METHODSUsing the Japan Trauma Data Bank, a nationwide trauma registry, the authors identified patients aged ≥ 18 years with ASDH who underwent surgical evacuation after blunt head trauma between 2004 and 2015. Logistic regression analysis was used to estimate a propensity score to predict decompressive craniectomy use. They then used propensity score–matched analysis to compare patients who underwent craniotomy with those who underwent decompressive craniectomy. To identify the potential benefits and disadvantages of decompressive craniectomy among different subgroups, they estimated the interactions between treatment and the subgroups using logistic regression analysis.RESULTSOf 236,698 patients who were registered in the database, 1788 were eligible for propensity score–matched analysis. The final analysis included 514 patients who underwent craniotomy and 514 patients who underwent decompressive craniectomy. The in-hospital mortality did not differ significantly between the groups (41.6% for the craniotomy group vs 39.1% for the decompressive craniectomy group; absolute difference −2.5%; 95% CI −8.5% to 3.5%). The length of hospital stay was significantly longer in patients who underwent decompressive craniectomy (median 23 days [IQR 4–52 days] vs 30 days [IQR 7–60 days], p = 0.005). Subgroup analyses demonstrated qualitative interactions between decompressive craniectomy and the patient subgroups, suggesting that patients who were more severely injured (Glasgow Coma Scale score < 9 and probability of survival < 0.64) and those involved in high-energy injuries may be good candidates for decompressive craniectomy.CONCLUSIONSThe results of this study showed that overall, decompressive craniectomy did not appear to be superior to craniotomy in ASDH treatment in terms of in-hospital mortality. In contrast, there were significant differences in the effectiveness of decompressive craniectomy between the subgroups. Thus, future studies should prioritize the identification of a subset of patients who will possibly benefit from the performance of each of the procedures.
The serum phosphorylated neurofilament heavy subunit (pNF-H) is a nervous system-specific protein that is released from damaged neural tissue after traumatic brain injury (TBI). The aim of this study was to elucidate the usefulness of serum pNF-H as a predictive marker for the outcome of patients after TBI. Patients with TBI (Glasgow Coma Scale score of 13 or less on admission) were included. Patients who were younger than age 18, dependent on others for daily activities before injury, pregnant, or who were not likely to survive for more than 24 h after injury were excluded. The outcome was assessed using the Glasgow Outcome Scale at 6 months after injury. Blood was collected from subjects (n = 32), and the serum pNF-H value was assessed at 24 and 72 h after TBI. The optimal cutoff value and usefulness of the serum pNF-H value for predicting the long-term outcome were investigated. We found that the serum pNF-H value at 24 h after injury was a good predictive marker of death at 6 months (p < 0.001) after injury. The optimal cutoff value was 240 pg/mL, and the area under the curve in the receiver operating characteristic analysis was 0.930. The serum pNF-H value at 72 h after injury was correlated with an unfavorable outcome (vegetative state or death) at 6 months (p < 0.01) with a cutoff value of 80 pg/mL. Collectively, the results of this study indicate that the serum pNF-H value is a useful predictive marker for patient outcome after TBI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.