A class of scaffolding protein containing the post-synaptic density-95/Dlg/ZO-1 (PDZ) domain is thought to be involved in synaptic trafficking of a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors during development. To clarify the molecular mechanism of AMPA receptor trafficking, we performed a yeast two-hybrid screening system using the cytoplasmic tail of the GluR1 subunit of AMPA receptor as a bait and identified a synaptic molecule, Shank3/ProSAP2, as a GluR1 subunit-interacting molecule. Shank3 is a PDZ domain-containing multidomain protein and is predominantly expressed in developing neurons. Using the glutathione S-transferase pull-down assay and immunoprecipitation technique we demonstrated that the GluR1 subunit directly binds to the PDZ domain of Shank3 via its carboxyl terminal PDZ-binding motif. We raised anti-Shank3 antibody to investigate the expression of Shank3 in cortical neurons. The pattern of Shank3 immunoreactivity was strikingly punctate, mainly observed in the spines, and closely matched the pattern of post-synaptic density-95 immunoreactivity, indicating that Shank3 is colocalized with post-synaptic density-95 in the same spines. When Shank3 and the GluR1 subunit were overexpressed in primary cortical neurons, they were also colocalized in the spines. Taken together with the biochemical interaction of Shank3 with the GluR1 subunit, these results suggest that Shank3 is an important molecule that interacts with GluR1 AMPA receptor at synaptic sites of developing neurons. Keywords: a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor, development, GluR1 subunit, post-synaptic density-95/ Dlg/ ZO-1 domain, Shank3, synapse. Transmission at excitatory synapses is primarily mediated by glutamate acting on three classes of ligand-gated ion channels, a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), kainate and NMDA receptors (Wisden and Seeburg 1993;Hollmann and Heinemann 1994). In addition to their role in synaptic transmission, these glutamate receptors (GluRs) have been thought to play a crucial role in many brain functions, including activity-dependent synaptogenesis during development and synaptic plasticity (McDonald and Johnston 1990;Bliss and Collingridge 1993).Many excitatory synapses in young developing neurons have been found to express only NMDA receptors, which are continuously blocked by magnesium at resting membrane potentials. As no evoked transmission is observed even when glutamate is present, these synapses are referred to as 'silent synapses'. During later development, AMPA receptors are delivered and clustered on the synaptic membrane in an activity-dependent manner, and the synapses subsequently become functionally active (Durand et al. 1996;Wu et al. 1996;Pickard et al. 2000;Liao et al. 2001;Isaac 2003). Thus, the clustering of AMPA receptors on the synaptic membrane is an essential event during synaptogenesis. Address correspondence and reprint requests to S. Kohsaka, Department of Neurochemistry, National Institute of Neu...
To elucidate the role of N-methyl-D-aspartate (NMDA) receptors during the early stage of cerebral neocortical development, we investigated the effect of an NMDA receptor antagonist, D(-)-2-amino-5-phosphonopentanoic acid (D-APV), on cell migration and proliferation in slice cultures and dissociated primary cultures prepared from rat cerebral neocortex at embryonic Day 17. Pulse-labeling experiments with 5-bromo-2'-deoxyuridine (BrdU) showed that chronic exposure to D-APV in slices delayed neuronal migration. Calcium imaging experiments revealed that functional NMDA receptors were expressed in neurons and the treatment with D-APV delayed neuronal maturation judging from the subunit composition of NMDA receptor subtypes. The results using pulse-labeling with BrdU indicated that exposure to D-APV for 3 days induced a clear increase in the number of proliferating progenitor cells in the ventricular zone in neocortical slices. Exposure to D-APV in primary cultures also increased the proliferation of progenitor cells. The effect of D-APV on progenitor cell proliferation was possibly mediated through neuronal cells. To elucidate the mechanism of enhanced progenitor cell proliferation induced by D-APV, we investigated expression of Hes1 and Hes5 mRNA in the ventricular zone of neocortical slices by reverse transcription-polymerase chain reaction. Tissue exposed to D-APV for 3 days showed higher expression of Hes1 and Hes5 mRNA than did unexposed control tissue. These results suggest that NMDA receptors expressed in neurons function in neuronal migration and maturation and in the proliferation of progenitor cells.
Mitochondria could be a good target for anti-parasitic drugs. The alpha and beta subunits of mitochondrial processing peptidase (MPP) and the core subunits of the cytochrome bc1 complex, UCR-1 and UCR-2, are homologous to one another and are important for mitochondrial functions. However, our knowledge of these proteins in nematodes is very limited. Caenorhabditis elegans, a free-living nematode, has six genes coding for proteins homologous to these subunits. On primary structure comparison, and immunochemical and enzymological analyses, the gene products were assigned as follows: Y71G12B.24, alpha-MPP; ZC410.2, beta-MPP; F56D2.1, UCR-1; VW06B3R.1, T10B10.2; and T24C4.1, UCR-2. The primary structures of beta-MPP and UCR-1 from Brugia malayi, a parasitic nematode causing human filariasis, were deduced from their cDNA structures. Phylogenetic analysis showed that the UCR-1s from both C. elegans and B. malayi were less related to mammalian UCR-1s than to MPPs from various organisms. MPP and the bc1 complex are essential for the life cycle of C. elegans, because their reverse genetic inhibition is lethal. This suggests the possibility that these proteins are also essential for the viability of B. malayi and other parasitic nematodes, and are potential targets for anti-parasitic agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.