Microglia are thought to play important roles not only in repairing injured tissue but in regulating neuronal activity, and visualizing the cells is very useful as a means of further investigating the function of microglia in vivo. We previously cloned the ionized calcium-binding adaptor molecule 1 (Iba1) gene, which is expressed selectively in microglia/microphages. To generate new transgenic mice to visualize microglia with enhanced green fluorescent protein (EGFP), we here constructed a plasmid carrying EGFP cDNA under control of the Iba1 promoter. This construct was injected into C57B/6 mouse zygotes, and the Iba1-EGFP transgenic line was developed. Fluorescent in-situ hybridization analysis revealed that the Iba1-EGFP transgene was located on chromosome 11D. No obvious defects were observed during development or in adulthood, and the EGFP fluorescence remained invariant over the course of at least four generations. Judging from the immunoreactivity with anti-Iba1 antibody, all EGFP-positive cells in the adult brain were ramified microglia. In the developing transgenic embryos, EGFP signals were detected as early as embryonic Day 10.5. The most prominent EGFP signals were found in forebrain, spinal cord, eye, foreleg, yolk sac, liver, and vessel walls. At postnatal Day 6, clear EGFP signals were observed in the supraventricular corpus callosum, known as "fountain of microglia", where ameboid microglia migrate into the brain parenchyma and mature into ramified microglia. Iba1-EGFP transgenic mice thus permit observation of living microglia under a fluorescence microscope and provide a useful tool for studying the function of microglia in vivo.
Death-associated protein kinase (DAP-kinase) is Ca(2+)/calmodulin-dependent serine/threonine kinase that contains ankyrin repeats and the death domain. It has been isolated as a positive mediator of interferon-gamma-induced apoptotic cell death of HeLa cells. In order to reveal the physiological role of DAP-kinase, the tissue distribution and developmental changes in mRNA expression of DAP-kinase were investigated by Northern blot and in situ hybridization analyses. DAP-kinase mRNA was predominantly expressed in brain and lung. In brain, DAP-kinase mRNA had already appeared at embryonic day 13 (E13) and was, thereafter, detected throughout the entire embryonic period. High levels of expression were detected in proliferative and postmitotic regions within cerebral cortex, hippocampus, and cerebellar Purkinje cells. These findings suggest that DAP-kinase may play an important role in neurogenesis where a physiological type of cell death takes place. The overall expression of DAP-kinase mRNA in the brain gradually declined at postnatal stages, and the expression became restricted to hippocampus, in which different expression patterns were observed among rostral, central, and caudal coronal sections, suggesting that DAP-kinase may be implicated in some neuronal functions. Furthermore, it was found that the expression of DAP-kinase mRNA was increased prior to a certain cell death induced by transient forebrain ischemia, indicating a possible relationship between DAP-kinase and neuronal cell death.
A class of scaffolding protein containing the post-synaptic density-95/Dlg/ZO-1 (PDZ) domain is thought to be involved in synaptic trafficking of a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors during development. To clarify the molecular mechanism of AMPA receptor trafficking, we performed a yeast two-hybrid screening system using the cytoplasmic tail of the GluR1 subunit of AMPA receptor as a bait and identified a synaptic molecule, Shank3/ProSAP2, as a GluR1 subunit-interacting molecule. Shank3 is a PDZ domain-containing multidomain protein and is predominantly expressed in developing neurons. Using the glutathione S-transferase pull-down assay and immunoprecipitation technique we demonstrated that the GluR1 subunit directly binds to the PDZ domain of Shank3 via its carboxyl terminal PDZ-binding motif. We raised anti-Shank3 antibody to investigate the expression of Shank3 in cortical neurons. The pattern of Shank3 immunoreactivity was strikingly punctate, mainly observed in the spines, and closely matched the pattern of post-synaptic density-95 immunoreactivity, indicating that Shank3 is colocalized with post-synaptic density-95 in the same spines. When Shank3 and the GluR1 subunit were overexpressed in primary cortical neurons, they were also colocalized in the spines. Taken together with the biochemical interaction of Shank3 with the GluR1 subunit, these results suggest that Shank3 is an important molecule that interacts with GluR1 AMPA receptor at synaptic sites of developing neurons. Keywords: a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor, development, GluR1 subunit, post-synaptic density-95/ Dlg/ ZO-1 domain, Shank3, synapse. Transmission at excitatory synapses is primarily mediated by glutamate acting on three classes of ligand-gated ion channels, a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), kainate and NMDA receptors (Wisden and Seeburg 1993;Hollmann and Heinemann 1994). In addition to their role in synaptic transmission, these glutamate receptors (GluRs) have been thought to play a crucial role in many brain functions, including activity-dependent synaptogenesis during development and synaptic plasticity (McDonald and Johnston 1990;Bliss and Collingridge 1993).Many excitatory synapses in young developing neurons have been found to express only NMDA receptors, which are continuously blocked by magnesium at resting membrane potentials. As no evoked transmission is observed even when glutamate is present, these synapses are referred to as 'silent synapses'. During later development, AMPA receptors are delivered and clustered on the synaptic membrane in an activity-dependent manner, and the synapses subsequently become functionally active (Durand et al. 1996;Wu et al. 1996;Pickard et al. 2000;Liao et al. 2001;Isaac 2003). Thus, the clustering of AMPA receptors on the synaptic membrane is an essential event during synaptogenesis. Address correspondence and reprint requests to S. Kohsaka, Department of Neurochemistry, National Institute of Neu...
Proteins of the membrane-associated guanylate kinase family play an important role in the anchoring and clustering of neurotransmitter receptors in the postsynaptic density (PSD) at many central synapses. However, relatively little is known about how these multifunctional scaffold proteins might provide a privileged site for activity- and cell type-dependent specification of the postsynaptic signaling machinery. Rho signaling pathway has classically been implicated in mechanisms of axonal outgrowth, dendrogenesis, and cell migration during neural development, but its contribution remains unclear at the synapses in the mature CNS. Here, we present evidence that Citron, a Rho-effector in the brain, is enriched in the PSD fraction and interacts with PSD-95/synapse-associated protein (SAP)-90 both in vivo and in vitro. Citron colocalization with PSD-95 occurred, not exclusively but certainly, at glutamatergic synapses in a limited set of neurons, such as the thalamic excitatory neurons; Citron expression, however, could not be detected in the principal neurons of the hippocampus and the cerebellum in the adult mouse brain. In a heterologous system, Citron was shown to form a heteromeric complex not only with PSD-95 but also with NMDA receptors. Thus, Citron-PSD-95/SAP-90 interaction may provide a region- and cell type-specific link between the Rho signaling cascade and the synaptic NMDA receptor complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.