A film casting process of polymer melts was discussed in this report and, in particular, the experimental measurement for rheological properties in film casting was carried out using with polypropylene and low density polyethylene. As a result, no remarkable difference in the viscoelastic properties was observed between two polymers except for the elongational ones. Low density polyethylene showed a remarkable increase in the elongational viscosity at high strain. Serious differences in the elongational properties were observed in the behavior of the necking phenomenon in the experimental film casting process. The necking width at the film edge of polypropylene was increased under the condition of higher draw ratio.However, in the case of low density polyethylene it was nearly constant and independent of the draw ratio. From these experiments, we concluded that the necking phenomenon in film casting depends on the elongational properties.Furthermore, to clarify the behavior in film casting, the flow simulation was carried out using three rheological models (the Newtonian, the Bird-Carreau and the Giesekus models) and their applicability was evaluated respectively.The simulation results on the necking phenomenon and film thickness distribution calculated with the Giesekus model was quantitatively agreed
Polymer degradation in the extrusion process decreases quality and productivity. For this reason, it is necessary to prevent polymer degradation. In the extrusion process, polymer degradation is caused by oxidation. It depends on the processing temperature and the amount of dissolved oxygen in the molten polymer. Therefore, a quantitative analysis of these factors is required.As for the degradation characteristics of the material used in this study, temperature and oxygen concentration dependency of the oxidation rate could be quantitatively characterized with an apparatus to evaluate polymer degradation which utilized chemiluminescence generated by an oxidation reaction.Moreover, an online measuring apparatus to analyze dissolved gas in the extruded molten polymer was developed. With this apparatus, the volume ratio of dissolved gases (N 2, O 2 etc.) to the extruded molten polymer could be quantitatively analyzed and the quality of the extruded molten polymer evaluated.With this apparatus, dissolved nitrogen (an index of entrained air) was analyzed with a full-flight screw and a barrier screw. Furthermore, observation of cross sectional views in the screw channel obtained from the cooling experiment under the operating conditions was carried out for the full-flight screw and the barrier screw. With the full-flight screw, break up phenomenon (collapse of solid polymer) occurred in the screw channel and the amount of nitrogen increased. With the barrier screw, the amount of nitrogen decreased because of prevention of the break up phenomenon in the screw channel.Consequently, it is shown that the use of the barrier screw is suitable for oxygen reduction in the molten polymer, which is a factor in causing polymer degradation.
High-speed winding of paper web sometimes leads the winding system into unstable states, interlayer slippage of wound roll, paper breakage and so on, due to the excessive air-entrainment at the roll-inlet of nip contact region. These phenomena are more frequently observed on coated paper or plastic film comparing with newspaper, because the former allows little permeation of air and their surface roughness is small. Therefore, it is of vital importance to clarify the in-roll stress of wound roll considering the effect of air-entrainment. Generally, it is known that the amount of air-entrainment is affected by grooving shape of nip roll surface. In this paper, we focused on the grooving shape and investigated the relationship with the air-entrainment into two rolls being pressed each other and the grooving shape in order to achieve stable winding at high speed. We conducted experiments using small sized test machine. Entrained air-film thickness was evaluated applying the solution of the elasto-hydrodynamic lubrication for foil bearing with the consideration of nip profile at the grooved area. Air film thickness was measured to ensure the applicability of the above theory. Consequently, we found that the air film thickness can be estimated considering the effect of grooves on the nip roll surface, and that the validity of the above estimations was ensured from experimental investigations. Furthermore, it became to be able to propose the optimal shape of grooves on nip roll surface to maintain the stable winding at high speed and at large-diameter in reel.
Two typical flow instabilities of "Shark Skin" and "Melt Fracture" for high density polyethylene were investigated in this report. Experimental measurements were carried out methodically in a wide flow region from the reservoir (entry region) to the die land with a specific slit die. Especially the flow pattern was visualized with a high speed camera and the frequency of the flow instability was analyzed. Corresponding to the visualization analysis, the pressure fluctuation in the slit die and the surface roughness at the die exit were measured simultaneously and these frequency characteristics were analyzed with a FFT (Fast Fourier Transform) analyzer. As for "Shark Skin" region, the irregularity of the surface roughness in the broad frequency band was recognized at the die exit. In spite of this surface roughness, the pressure fluctuation and the fluctuation of the flow pattern at the wall vicinity in the die land were not observed. These results indicate that "Shark Skin" occurs at the die exit. As for "Melt Fracture" region, the periodical oscillation of the flow pattern and the periodical pressure fluctuation which corresponded to the periodical distortion of the extrudate was recognized in the die land. However the periodical oscillation of the flow pattern and the periodical pressure fluctuation could not be recognized in the reservoir (entry region of the die land). These results indicate that "Melt Fracture" is initiated at the die entry and occurs in the die land. Consequently it is clarified that "Shark Skin" occurs at the die exit and the flow instability which lead to "Melt Fracture" is initiated at the die entry and occurs in the die land.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.