Brownian dynamics (BD) simulations were carried out for suspensions of oblate spheroid particles interacting via the Gay-Berne (GB) potential. The oblate spheroid particles were applied as a model of disc-like particles and the system of suspension of the particles was considered. Numerically analyzed were both the change in phase with the number density of the particles at equilibrium state and the behavior of the particles in simple shear flows. The system changed from isotropic phase to nematic one with increasing the particle concentration. In the simulation of shear flows, the shear was imposed upon the systems in nematic phase at equilibrium. The systems exhibited various motions of the director depending on the shear rate, e.g. the continuous rotation of director at low shear rates, the wagging at moderate shear rates, and the flow aligning at high shear rates. Temporal change in inner structure of suspensions was also analyzed and collapse of initial particle configurations due to shear was found. Moreover, rheological properties of the suspension were investigated. The numerical simulation predicted the shear-thinning in viscosity, negative first normal stress difference, and positive second normal stress difference, and these results qualitatively agreed with the predictions using a constitutive equation for discotic nematics. The present study proved that the BD simulation using spheroid particles interacting via the GB potential is an effective approach for investigating the flow behavior and flow-induced structure of suspensions of disklike particles at a particulate level.
A film casting process of polymer melts was discussed in this report and, in particular, the experimental measurement for rheological properties in film casting was carried out using with polypropylene and low density polyethylene. As a result, no remarkable difference in the viscoelastic properties was observed between two polymers except for the elongational ones. Low density polyethylene showed a remarkable increase in the elongational viscosity at high strain. Serious differences in the elongational properties were observed in the behavior of the necking phenomenon in the experimental film casting process. The necking width at the film edge of polypropylene was increased under the condition of higher draw ratio.However, in the case of low density polyethylene it was nearly constant and independent of the draw ratio. From these experiments, we concluded that the necking phenomenon in film casting depends on the elongational properties.Furthermore, to clarify the behavior in film casting, the flow simulation was carried out using three rheological models (the Newtonian, the Bird-Carreau and the Giesekus models) and their applicability was evaluated respectively.The simulation results on the necking phenomenon and film thickness distribution calculated with the Giesekus model was quantitatively agreed
The penetration of a long gas bubble through a viscoelastic fluid in a tube was studied. Experiments were carried out for two Newtonian and five polymeric solutions to investigate the relation between the coating film thickness and rheological properties of the test fluids. The polymeric solutions are viscoelastic fluids having shear-thinning viscosity. A bubble of air was injected into a tube filled with a test fluid to form hydrodynamic coating on a tube wall. The film thickness was evaluated by hydrodynamic fractional coverage m. The fractional coverage was characterized using the capillary number Ca and the Weissenberg number Wi. For viscoelastic fluids, Ca and Wi were evaluated considering the shear-thinning viscosity. Two kinds of representative shear rate were used for the evaluation of Ca and Wi. The dependence of m on Ca in viscoelastic fluids was different from that of the Newtonian case. The film was thinner than that of the Newtonian case at the same Ca when Wi was small, i.e. the viscous property was dominant. The shear-thinning viscosity had a role to make the film thin. On the other hand, the film tended to be thicker than the corresponding Newtonian results at large Wi because of normal stress effect.
Polymer degradation in the extrusion process decreases quality and productivity. For this reason, it is necessary to prevent polymer degradation. In the extrusion process, polymer degradation is caused by oxidation. It depends on the processing temperature and the amount of dissolved oxygen in the molten polymer. Therefore, a quantitative analysis of these factors is required.As for the degradation characteristics of the material used in this study, temperature and oxygen concentration dependency of the oxidation rate could be quantitatively characterized with an apparatus to evaluate polymer degradation which utilized chemiluminescence generated by an oxidation reaction.Moreover, an online measuring apparatus to analyze dissolved gas in the extruded molten polymer was developed. With this apparatus, the volume ratio of dissolved gases (N 2, O 2 etc.) to the extruded molten polymer could be quantitatively analyzed and the quality of the extruded molten polymer evaluated.With this apparatus, dissolved nitrogen (an index of entrained air) was analyzed with a full-flight screw and a barrier screw. Furthermore, observation of cross sectional views in the screw channel obtained from the cooling experiment under the operating conditions was carried out for the full-flight screw and the barrier screw. With the full-flight screw, break up phenomenon (collapse of solid polymer) occurred in the screw channel and the amount of nitrogen increased. With the barrier screw, the amount of nitrogen decreased because of prevention of the break up phenomenon in the screw channel.Consequently, it is shown that the use of the barrier screw is suitable for oxygen reduction in the molten polymer, which is a factor in causing polymer degradation.
The gas penetration of a long bubble through a viscoelastic fluid in a tube was studied. Experiments were carried out for two Newtonian and five polymeric solutions to investigate the relation between the coating film thickness and rheological properties of the test fluids. The polymeric solutions are viscoelastic fluids having shear-thinning viscosity. A bubble of air was injected into a tube filled with a test fluid to form hydrodynamic coating on a tube wall. The film thickness was evaluated by hydrodynamic fractional coverage m. The fractional coverage was characterized using the capillary number Ca and the Weissenberg number Wi. For viscoelastic fluids, Ca and Wi were evaluated considering the shear-thinning viscosity. Two kinds of representative shear rate were used for the evaluation of Ca and Wi. The dependence of m on Ca in viscoelastic fluids was different from that of the Newtonian case. The film was thinner than that of the Newtonian case at the same Ca when Wi was small, i.e. the viscous property was dominant. The shear-thinning viscosity had a role to make the film thin. On the other hand, the film tended to be thicker than the corresponding Newtonian results at large Wi because of normal stress effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.