This report describes a canine model of obstructive sleep apnea (OSA) developed in our laboratory and the results of its preliminary short-term application. Healthy adult dogs were prepared with a tracheostomy and with implanted electroencephalographic and nuchal electromyographic recording electrodes. A silent occlusion valve was attached to the outer end of the endotracheal tube. The electroencephalogram and electromyogram were monitored continuously by a computer that determined sleep-wake state using software developed in our laboratory. At a predetermined time (e.g., 12 s) after each sleep onset, a signal was transmitted from the computer to the valve controller, resulting in airway occlusion. When the dog aroused from sleep, the occlusion was released. These events therefore mimic those that occur in human OSA. Successful operation of the model was confirmed during 5-day continuous trials in two dogs. During the trials, the dogs became increasingly somnolent both by behavioral observation and objective measurement. The frequency of occlusions increased, and measures of apnea severity, including apnea duration and end-apneic arterial oxygen saturation, worsened. We conclude that this experimental model of repeated airway occlusion during sleep provides a potentially powerful tool for investigating the sequelae of OSA.
A VLC (Visible Light Communication) system using fluorescent lights has been developed for indoor guidance of the visually impaired. While it is relatively straightforward to provide generalized location information for a blind user, precise location information is much more difficult to determine. We propose that the effective data reception range and the receiver's precise location can be calculated using measured sensor angles. A series of experiments have been performed in a practical platform with 22 fluorescent lights, 39 measuring points (MP). The average distance error could reach as low as 10 cm. This development will provide greater accuracy and therefore less stress for blind users.
A novel analog decoding method using only 90-degree phase shifters is proposed to simplify the decoding method for short-range multiple-input multiple-output (MIMO) transmission. In a short-range MIMO transmission, an optimal element spacing that maximizes the channel capacity exists for a given transmit distance between the transmitter and receiver. We focus on the fact that the weight matrix by zero forcing (ZF) at the optimal element spacing can be obtained by using dividers and 90degree phase shifters because it can be expressed by a unitary matrix. The channel capacity by the proposed method is next derived for the evaluation of the exact limitation of the channel capacity. Moreover, it is shown that an optimal weight when using directional antennas can be expressed by using only dividers, 90-degree phase shifters, and attenuators, regardless of the beam width of the directional antenna. Finally, bit error rate and channel capacity evaluations by both simulation and measurement confirm the effectiveness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.