Rat liver cytochrome P-450MC cDNA was inserted between the ADH1 promoter and terminator regions of the yeast expression vector pAAH5. On introduction of the resulting recombinant plasmid pAMC1, Saccharomyces cerevisiae cells synthesized up to 8 X 10(5) molecules per cell of the cytochrome P-450MC protein, most of which was localized in yeast microsomes. Approximately half of the synthesized cytochrome contained heme in the enzyme molecule. These formed a functional electron-transport chain in the microsomes which exhibited aryl hydrocarbon hydroxylase activity toward benzo[a]pyrene.
Gramineous plants, including the major agricultural crops wheat (Triticum aestivum L.), rye (Secale cereale L.) and maize (Zea mays L.), accumulate benzoxazinones (Bxs) as defensive compounds. Previously, we isolated cDNAs of the Bx biosynthetic genes in wheat, TaBx2- TaBx5, that encode the enzymes catalyzing the sequential hydroxylation of indole to Bxs. In this study we isolated a cDNA of TaBx1, which encodes the first enzyme of the Bx pathway of wheat. The level of identity (80%) in deduced amino-acid sequence between TaBx1 and the corresponding maize gene Bx1 was as high as those shown between TaBx2- TaBx5 and the corresponding maize genes Bx2- Bx5, respectively. Southern blot analysis using the TaBx1- TaBx5 cDNAs as probes was conducted with aneuploid lines of hexaploid wheat in order to determine sub-chromosomal locations of the five Bx biosynthetic genes in Triticeae species. In wheat, TaBx1 and TaBx2 co-existed in specific regions of chromosomes 4A, 4B and 4D, and TaBx3- TaBx5 were localized together in the distal regions of the short arms of chromosomes 5A, 5B and 5D. TaBx3 and TaBx5 were found to have duplicated loci in the long arm and the short arm of chromosome 5B, respectively. In rye, homoeoloci of TaBx1 and TaBx2 were located on chromosome 7R and those for TaBx3- TaBx5 were located on chromosome 5R. In barley, no Southern blot band was detected with any of the probes under the highly stringent hybridization conditions, suggesting that the non-Bx phenotype of barley is attributable to the loss of Bx biosynthetic genes.
A hybrid cDNA encoding a fused enzyme consisting of rat cytochrome P450c and rat NADPH-cytochrome P450 reductase was constructed by combining the cytochrome P450c cDNA with the cDNA fragment encoding the protease-solubilized moiety of the NADPH-cytochrome P450 reductase. The hybrid cDNA was inserted between the yeast alcohol dehydrogenase I promoter and terminator of the expression vector pAAH5 to yield expression plasmid pAMP19. Saccharomyces cerevisiae AH22 cells transformed with the expression plasmid pAMP19 produced a 130-kD protein reactive with both anti-cytochrome P450c Ig and antireductase Ig. The yeast cells containing the fused enzyme exhibited about four times higher monooxygenase activity toward 7-ethoxycoumarin than those containing rat cytochrome P450c alone. The fused enzyme was purified from the yeast microsomal fraction by sequential chromatography with DEAE-cellulose and 2',5'-ADP Sepharose 4B columns. The preparation had an apparent molecular weight of 130 kD and the same sequence of the 10 amino-terminal amino acids as that of rat cytochrome P450c. Spectral properties of the fused enzyme indicated the presence of a protoheme, flavin adenine dinucleotide, and flavin mononucleotide in the molecule. The reaction mechanism of the fused enzyme followed first-order kinetics. These results clearly indicate that the fused enzyme is a new self-catalytic P450 monooxygenase. Trypsin treatment of yeast microsomes containing the fused enzyme suggested that the P450 moiety is embedded in the microsomal membrane with the reductase moiety lying on the cytoplasmic side.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.