We show experimentally that a stable wave propagating into a region characterized by an opposite current may become modulationally unstable. Experiments have been performed in two independent wave tank facilities; both of them are equipped with a wavemaker and a pump for generating a current propagating in the opposite direction with respect to the waves. The experimental results support a recent conjecture based on a current-modified nonlinear Schrödinger equation which establishes that rogue waves can be triggered by a nonhomogeneous current characterized by a negative horizontal velocity gradient.
Rogue waves in opposing currents: An experimental study on deterministic and stochastic wave trains / Toffoli, A; Waseda, T.; Houtani, H.; Cavaleri, L.; Greaves, D.; Onorato, M
A floating offshore wind turbine (FOWT) concept with a guy-wire-supported tower was investigated to obtain motion results in waves considering its elastic model characteristics. The FOWT concept studied aims to reduce the construction costs by using a light-weight structure tensioned with guy wires and a downwind type. Wave tank experiments of an elastically similar segmented backbone model in the 1:60 scale were carried out to clarify the dynamic elastic response features of the structure. The experimental results were compared with numerical simulations obtained from NK-UTWind and WAMIT codes. The bending moment measured at the tower and pontoons had two peak values for different wave periods carried out. The short-wave period peak was due to sagging/hogging when the wavelength matched the floater length. The second peak was due to the large tower top acceleration, which caused a large bending moment at the tower base and pontoon to support the inertia force. The wind force was not significant to modify the FOWT response. The sensibility analysis in pontoons and tower rigidities confirmed the importance of the guy wires to support the inertia due to the waves and wind incidence. The new concept of a very-light FOWT with a guy-wire-supported tower may be an option for future FOWT developments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.