Mammalian sexual fate is determined by the presence or absence of sex determining region of the Y chromosome (Sry) in the “bipotential” gonads. Recent studies have demonstrated that both male and female sexual development are induced by distinct and active genetic pathways. Breeding the Y chromosome from Mus m. domesticus poschiavinus (POS) strains into C57BL/6J (B6J) mice (B6J-XYPOS) has been shown to induce sex reversal (75%: bilateral ovary, 25%: true hermaphrodites). However, our B6N-XYPOS mice, which were generated by backcrossing of B6J-XYPOS on an inbred B6N-XX, develop as males (36%: bilateral testis with fertility as well as bilateral ovary (34%), and the remainder develop as true hermaphrodites. Here, we investigated in detail the expressions of essential sex-related genes and histological features in B6N-XYPOS mice from the fetal period to adulthood. The onsets of both Sry and SRY-box 9 (Sox9) expressions as determined spatiotemporally by whole-mount immunohistochemistry in the B6N-XYPOS gonads occurred 2–3 tail somites later than those in B6N-XYB6 gonads, but earlier than those in B6J-XYPOS, respectively. It is possible that such a small difference in timing of the Sry expression underlies testicular development in our B6N-XYPOS. Our study is the first to histologically show the expression and ectopic localization of a female-related gene in the XYPOS testes and a male-related gene in the XYPOS ovaries. The results from these and previous experiments indicate that the interplay between genome variants, epigenetics and developmental gene regulation is crucial for testis development.
The epithelial cell composition was investigated in the follicle-associated intestinal crypt (FAIC) of rat Peyer’s patches. The epithelium of the FAIC mainly consisted of columnar epithelial cells, goblet cells and Paneth cells. The characteristics of secretory granules in Paneth cells and goblet cells of both the FAIC and ordinary intestinal crypts (IC) were almost the same in periodic acid-Schiff (PAS) reaction, Alcian blue (AB) staining and the immunohistochemical detection of lysozymes and soluble phospholipase A2. Both goblet cells and Paneth cells were markedly less frequent on the follicular sides than on the anti-follicular sides of the FAIC. Goblet cells were also markedly less frequent in the follicle-associated epithelium (FAE) than in the ordinary intestinal villi (IV). Indigenous bacteria were more frequently adhered to FAE than to follicle-associated intestinal villi or IV. These findings suggest that the host defense against indigenous bacteria is inhibited on the follicular sides of FAIC, which might contribute to the preferential settlement of indigenous bacteria on the FAE; they also suggest that differentiation into secretory cells is inhibited in the epithelium of the follicular sides of FAIC, so that differentiation into M cells might be admitted in the FAE of rat Peyer’s patches. Furthermore, intermediate cells possessing characteristics of both Paneth cells and goblet cells were rarely found in the FAIC, but not in the IC. This finding suggests that the manner of differentiation into Paneth cells in the FAIC differs from that in the IC.
Paneth cells secrete bactericidal substances in response to bacterial proliferation on the mucosal surface without directly contacting bacteria. However, the induction mechanism of this transient secretion has not been clarified, although nervous system and/or immunocompetent cells in the lamina propria (LP) might be involved. In this study, we ultrastructurally and immunohistochemically investigated which LP cells are localized beneath Paneth cells and examined the relationship between the Paneth cell-derived cellular processes which extended into the LP and the LP cells. The results showed that various cells-including blood capillary, subepithelial stromal cell, and nerve fiber-were present in the LP beneath Paneth cells. Endothelial cells of blood capillary were the cells most frequently found in this location; they were situated within 1 μm of the Paneth cells and possessed fenestration on the surfaces adjacent to Paneth cells. The Paneth cells rarely extended the cellular processes toward the LP across the basal lamina. Most of the cellular processes of Paneth cells contacted the subepithelial stromal cells. Immunohistochemistry revealed that the CD34 CD31 αSMA stromal cells preferentially localized in the LP beneath the intestinal crypt base, while PDGFRα αSMA stromal cells mainly localized around the lateral portions of the intestinal crypt and PDGFRα αSMA stromal cells localized in the intestinal villus. From these findings, the existence of blood capillaries beneath Paneth cells might reflect the active exocrine function of Paneth cells. Furthermore, subepithelial stromal cells, probably with a CD34 CD31 αSMA PDGFRα phenotype, beneath the crypt base might affect Paneth cell activity by interacting with their cellular processes. Anat Rec, 301:1074-1085, 2018. © 2018 Wiley Periodicals, Inc.
Paneth cells (PCs) contribute to the host defense against indigenous bacteria in the small intestine. We found Paneth cell-like cells (PLCs) in the rat ascending colon, but the nature of PLCs is never clarified. Therefore, the present study aimed to clarify the cytological characteristics of PLCs and discuss their cellular differentiation. PLCs were localized in the bases of intestinal crypts, especially follicle-associated intestinal crypts in proximal colonic lymphoid tissue, but were very seldom found in the ordinary intestinal crypts of the ascending colon. PLCs possessed specific granules with highly electron-dense cores and haloes, as well as PCs in the small intestine. The secretory granules of PLCs were positive for PAS reaction, lysozyme and soluble phospholipase A2, but negative for Alcian blue staining, b-defensin-1 and -2, as well as the ones of PCs. Furthermore, intermediate cells possessing both the PLC-specific granules and the mucus granules similar to those of goblet cells (GCs) were occasionally found in the vicinity of PLCs. Intermediate cells ranged from goblet cell-like cells rich in mucus granules to PLClike cells with few mucus granules. The cellular condensation and fragmentation were exclusively found in PLCs but never seen in intermediate cells or GCs. The PLCs, which were identified as PC, were suggested to be transformed from GCs through intermediate cells and finally to die by apoptosis in intestinal crypts of proximal colonic lymphoid tissue in the rat ascending colon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.