Subtractive suppression hybridization was used to generate a cDNA library enriched in cDNA sequences corresponding to mRNA species that are specifically upregulated by hypoxia (6 h, 1% O 2 ) in the oxygen-responsive pheochromocytoma cell line. The dual specificity protein-tyrosine phosphatase MAPK phosphatase-1 (MKP-1) was highly represented in this library. Clones were arrayed on glass slides to create a hypoxia-specific cDNA microarray chip. Microarray, northern blot, and western blot analyses confirmed that MKP-1 mRNA and protein levels were up-regulated by hypoxia by ϳ8-fold. The magnitude of the effect of hypoxia on MKP-1 was approximately equal to that induced by KCl depolarization and much larger than the effects of either epidermal growth factor or nerve growth factor on MKP-1 mRNA levels. In contrast to the calcium-dependent induction of MKP-1 by KCl depolarization, the effect of hypoxia on MKP-1 persisted under calcium-free conditions. Cobalt and deferoxamine also increased MKP-1 mRNA levels, suggesting that hypoxia-inducible factor proteins may play a role in the regulation of MKP-1 by hypoxia. Pretreatment of cells with SB203580, which inhibits p38 kinase activity, significantly reduced the hypoxia-induced increase in MKP-1 RNA levels. Thus, hypoxia robustly increases MKP-1 levels, at least in part through a p38 kinase-mediated mechanism.
The mechanisms by which cells adapt and respond to changes in oxygen tension remain largely unknown. Our laboratory has used the PC12 cell line to study both biophysical and molecular responses to hypoxia. This chapter summarizes our findings. We found that membrane depolarization that occurred when PC12 cells were exposed to reduced O(2) was mediated by a specific potassium channel, the Kv1.2 channel. The membrane depolarization leads to increased Ca(2+) conductance through a voltage-sensitive channel, which in turn mediates the release of the neurotransmitters dopamine, adenosine, glutamate, and GABA. In addition, increased intracellular Ca(2+) and other signaling systems regulate hypoxia-induced gene expression, which contributes to the adaptive response to reduced O(2+). We identified several critical signaling pathways that regulate a complex gene expression profile in PC12 cells during hypoxia. These include the cAMP-protein kinase A, Ca(2+)-calmodulin, p42/44 mitogen-activated protein kinase (MAPK), stress-activated protein kinase (SAPK; p38 kinase), and the phosphatidylinositol 3-kinase-AKT as regulators of gene expression. Several of these pathways regulate hypoxia-specific transcription factors that are members of the hypoxia-inducible factor (HIF) family. Recently, we have successfully used subtractive cDNA libraries and microarray analysis to identify the genomic profile that mediates the cellular response to hypoxia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.