Subtractive suppression hybridization was used to generate a cDNA library enriched in cDNA sequences corresponding to mRNA species that are specifically upregulated by hypoxia (6 h, 1% O 2 ) in the oxygen-responsive pheochromocytoma cell line. The dual specificity protein-tyrosine phosphatase MAPK phosphatase-1 (MKP-1) was highly represented in this library. Clones were arrayed on glass slides to create a hypoxia-specific cDNA microarray chip. Microarray, northern blot, and western blot analyses confirmed that MKP-1 mRNA and protein levels were up-regulated by hypoxia by ϳ8-fold. The magnitude of the effect of hypoxia on MKP-1 was approximately equal to that induced by KCl depolarization and much larger than the effects of either epidermal growth factor or nerve growth factor on MKP-1 mRNA levels. In contrast to the calcium-dependent induction of MKP-1 by KCl depolarization, the effect of hypoxia on MKP-1 persisted under calcium-free conditions. Cobalt and deferoxamine also increased MKP-1 mRNA levels, suggesting that hypoxia-inducible factor proteins may play a role in the regulation of MKP-1 by hypoxia. Pretreatment of cells with SB203580, which inhibits p38 kinase activity, significantly reduced the hypoxia-induced increase in MKP-1 RNA levels. Thus, hypoxia robustly increases MKP-1 levels, at least in part through a p38 kinase-mediated mechanism.
Mammalian cells require a constant supply of oxygen to maintain energy balance, and sustained hypoxia can result in cell death. It is therefore not surprising that sophisticated adaptive mechanisms have evolved that enhance cell survival during hypoxia. During the past few years, there have been a growing number of reports on hypoxia-induced transcription of specific genes. In this review, we describe a unique experimental approach that utilizes focused cDNA libraries coupled to microarray analyses to identify hypoxia-responsive signal transduction pathways and genes that confer the hypoxia-tolerant phenotype. We have used the subtractive suppression hybridization (SSH) method to create a cDNA library enriched in hypoxia-regulated genes in oxygen-sensing pheochromocytoma cells and have used this library to create microarrays that allow us to examine hundreds of genes at a time. This library contains over 300 genes and expressed sequence tags upregulated by hypoxia, including tyrosine hydroxylase, vascular endothelial growth factor, and junB. Hypoxic regulation of these and other genes in the library has been confirmed by microarray, Northern blot, and real-time PCR analyses. Coupling focused SSH libraries with microarray analyses allows one to specifically study genes relevant to a phenotype of interest while reducing much of the biological noise associated with these types of studies. When used in conjunction with high-throughput, dye-based assays for cell survival and apoptosis, this approach offers a rapid method for discovering validated therapeutic targets for the treatment of cardiovascular disease, stroke, and tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.