The dependence on wavelength of repetitive-pulse (10 Hz, 8-10 ns) laser-induced damage on beta barium metaborate (BBO) has been investigated. The thresholds of dielectric breakdown in bulk crystal have been found to be 0.3 GW/cm(2) at 266 nm, 0.9 GW/cm(2) at 355 nm, 2.3 GW/cm(2) at 532 nm, and 4.5 GW/cm(2) at 1064 nm. Results indicate two-photon absorption at 266 and 355 nm, which helps to produce an avalanche effect that causes breakdown at each of the four wavelengths tested. Neither the BBO refractive indices nor the absorption spectrum change until breakdown occurs.
The transparency range of beta-BaB(2)O(4) (BBO) was expanded by means of cooling, and the resulting absorption coefficient at 193.4 nm was reduced to 0.29cm(-1) at 91 K from 1.39cm(-1) at 295 K. Further, generation of light at 186.0 nm (the measurement limit in air) by type I sum-frequency generation (SFG) based on fundamental (744-nm) and third-harmonic (248-nm) light from a Ti:sapphire laser was confirmed for cooled BBO. Calculations based on observed data for SFG wavelengths and phase-matching angles indicate a potential for cooled BBO to generate wavelengths as low as 181.7 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.