Smart home applications are ubiquitous and have gained popularity due to the overwhelming use of Internet of Things (IoT)-based technology. The revolution in technologies has made homes more convenient, efficient, and even more secure. The need for advancement in smart home technology is necessary due to the scarcity of intelligent home applications that cater to several aspects of the home simultaneously, i.e., automation, security, safety, and reducing energy consumption using less bandwidth, computation, and cost. Our research work provides a solution to these problems by deploying a smart home automation system with the applications mentioned above over a resource-constrained Raspberry Pi (RPI) device. The RPI is used as a central controlling unit, which provides a cost-effective platform for interconnecting a variety of devices and various sensors in a home via the Internet. We propose a cost-effective integrated system for smart home based on IoT and Edge-Computing paradigm. The proposed system provides remote and automatic control to home appliances, ensuring security and safety. Additionally, the proposed solution uses the edge-computing paradigm to store sensitive data in a local cloud to preserve the customer’s privacy. Moreover, visual and scalar sensor-generated data are processed and held over edge device (RPI) to reduce bandwidth, computation, and storage cost. In the comparison with state-of-the-art solutions, the proposed system is 5% faster in detecting motion, and 5 ms and 4 ms in switching relay on and off, respectively. It is also 6% more efficient than the existing solutions with respect to energy consumption.
Fire detection and management is very important to prevent social, ecological, and economic damages. However, achieving real-time fire detection with higher accuracy in an IoT environment is a challenging task due to limited storage, transmission, and computation resources. To overcome these challenges, early fire detection and automatic response are very significant. Therefore, we develop a novel framework based on a lightweight convolutional neural network (CNN), requiring less training time, and it is applicable over resource-constrained devices. The internal architecture of the proposed model is inspired by the block-wise VGG16 architecture with a significantly reduced number of parameters, input size, inference time, and comparatively higher accuracy for early fire detection. In the proposed model, small-size uniform convolutional filters are employed that are specifically designed to capture fine details of input fire images with a sequentially increasing number of channels to aid effective feature extraction. The proposed model is evaluated on two datasets such as a benchmark Foggia’s dataset and our newly created small-scaled fire detection dataset with extremely challenging real-world images containing a high-level of diversity. Experimental results conducted on both datasets reveal the better performance of the proposed model compared to state-of-the-art in terms of accuracy, false-positive rate, model size, and running time, which indicates its robustness and feasible installation in real-world scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.