Natural populations of Lilium candidum L. are remarkably affected by biotic and abiotic factors therefore there is a requirement to develop effective micropropagation protocol to provide mass production, multiplication and conservation of these plants. For this reason, this study was aimed to develop an efficient micropropagation method for multiple shoot production via somatic embryogenesis induced from L. candidum stem bulbils and also to determine the genetic stability of in vitro grown plants using SSR markers. The obtained results of this study are the first comprehensive reports including an investigation of genetic fidelity on somatic embryogenesis of L. candidum. After surface sterilization of bulbils, the calculated regeneration percentage of them was 89.5% and the callus induction was achieved using leaf segments of in vitro grown bulbils. The well formed somatic embryos were obtained from smooth whitish-yellow colored calli and these somatic embryos produced well formed healthy L. candidum seedlings with adventitious roots. All rooted seedlings were easily adapted to greenhouse conditions and the genetic stability of in vitro grown seedlings were determined by using SSR-PCR technique and it was calculated as 100%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.