The quantum random walk has been much studied recently, largely due to its highly nonclassical behavior. In this paper, we study one possible route to classical behavior for the discrete quantum walk on the line: the presence of decoherence in the quantum "coin" which drives the walk. We find exact analytical expressions for the time dependence of the first two moments of position, and show that in the long-time limit the variance grows linearly with time, unlike the unitary walk. We compare this to the results of direct numerical simulation, and see how the form of the position distribution changes from the unitary to the usual classical result as we increase the strength of the decoherence.
We find a canonical form for pure states of a general multipartite system, in which the constraints on the coordinates (with respect to a factorisable orthonormal basis) are simply that certain ones vanish and certain others are real. For identical particles they are invariant under permutations of the particles. As an application, we find the dimension of the generic local equivalence class.
We look at two possible routes to classical behavior for the discrete quantum random walk on the integers: decoherence in the quantum "coin" which drives the walk, or the use of higher-dimensional (or multiple) coins to dilute the effects of interference. We use the position variance as an indicator of classical behavior and find analytical expressions for this in the long-time limit; we see that the multicoin walk retains the "quantum" quadratic growth of the variance except in the limit of a new coin for every step, while the walk with decoherence exhibits "classical" linear growth of the variance even for weak decoherence.
Quantum random walks have been much studied recently, largely due to their highly nonclassical behavior. In this paper, we study one possible route to classical behavior for the discrete quantum random walk on the line: the use of multiple quantum "coins" in order to diminish the effects of interference between paths. We find solutions to this system in terms of the single coin random walk, and compare the asymptotic limit of these solutions to numerical simulations. We find exact analytical expressions for the time-dependence of the first two moments, and show that in the long time limit the "quantum mechanical" behavior of the one-coin walk persists. We further show that this is generic for a very broad class of possible walks, and that this behavior disappears only in the limit of a new coin for every step of the walk.
Maps that are not completely positive (CP) are often useful to describe the dynamics of open systems. An apparent violation of complete positivity can occur because there are prior correlations of the principal system with the environment, or if the applied transformation is correlated with the state of the system. We provide a physically motivated definition of accessible non-CP maps and derive two necessary conditions for a map to be accessible. We also show that entanglement between the system and the environment is not necessary to generate a non-CP dynamics. We describe two simple approximations that may be sufficient for some problems in process tomography, and then outline what these methods may be able to tell us in other situations where non-CP dynamics naturally arise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.