Because of its rapid onset of action, pulmonary administration of levodopa is an interesting alternative to oral administration for the rescue treatment of Parkinson’s disease patients in an off period. We studied the ability of Parkinson’s disease patients to operate a dry powder inhaler (DPI) correctly during an off period. We used an instrumented test inhaler with three different resistances to air flow to record flow curves and computed various inhalation parameters. We observed that all (13) patients were able to generate pressure drops > 2 kPa over the highest resistance and 10 out of 13 patients achieved at least 4 kPa. Inhaled volumes (all resistances) varied from 1.2 L to 3.5 L. Total inhalation time and the time to peak inspiratory flow rate both decreased with decreasing inhaler resistance. Twelve out of thirteen patients could hold their breath for at least five seconds after inhalation and nine could extend this time to ten seconds. The data from this study indicate that patients with Parkinson’s disease will indeed be able to use a dry powder inhaler during an off period and they provide an adequate starting point for the development of a levodopa powder inhaler to treat this particular patient group.
Swallowing problems and the required dose adaptations needed to obtain optimal pharmacotherapy may be a hurdle in the use of tablets in daily clinical practice. Tablet splitting, crushing, or grinding is often applied to personalise medication, especially for the elderly and children. In this study, the performance of different types of (commercially available) devices was studied. Included were splitters, screwcap crushers, manual grinders, and electric grinders. Unscored tablets without active ingredient were prepared, with a diameter of 9 and 13 mm and a hardness of 100–220 N. Tablets were split into two parts and the difference in weight was measured. The time needed to pulverise the tablets (crush time) was recorded. The residue remaining in the device (loss) was measured. The powder was sieved to obtain a particle fraction >600 µm and <600 µm. The median particle size and particle size distribution of the later fraction were determined using laser diffraction analysis. Splitting tablets into two equal parts appeared to be difficult with the devices tested. Most screwcap grinders yielded a coarse powder containing larger chunks. Manual and especially electric grinders produced a finer powder, making it suitable for administration via an enteral feeding tube as well as for use in individualised preparations such as capsules. In conclusion, for domestic and incidental use, a screwcap crusher may provide sufficient size reduction, while for the more demanding regular use in hospitals and nursing residences, a manual or electric grinder is preferred.
Carboplatin administration can usually be safely continued via a so-called desensitisation protocol when hypersensitivity reactions arise. Severe breakthrough reactions that occur early during desensitisation are likely to be IgE-mediated; in that case, addition of omalizumab premedication should be strongly considered.
The structural stability of plasmid pGP1, which encodes a fusion between the penicillinase gene (penP) of Bacillus licheniformis and the Escherichia coli lacZ gene, was investigated in Bacillus subtilis strains expressing mutated subunits of the ATP-dependent nuclease, AddAB, and strains lacking the major recombination enzyme, RecA. Strains carrying a mutation in the ATP-binding site of the AddB subunit exhibited high levels of plasmid instability, whereas a comparable mutation in the A subunit did not affect plasmid stability. Using an alternative plasmid system, pGP100, we were able to demonstrate that the differences in stability reflected differences in initial recombination frequencies. Based on a comparison of endpoint sequences observed in the various hosts, we speculate that at least two different mechanisms underlie the deletion events involved, the first (type I) occurring between nonrepeated sequences, and the second (type II) occurring between short direct repeats (DRs). The latter event was independent of single-strand replication intermediates and the mode of replication and possibly requires the introduction of double-strand breaks (DSBs) between the repeats. In the absence of functional AddAB complex, or the AddB subunit, DSBs are likely to be processed via a recAindependent mechanism, resulting in intramolecular recombination between the DRs. In wild-type cells, such DSBs are supposed to be either repaired by a mechanism involving AddAB-dependent recombination or degraded by the AddAB-associated exonuclease activity. Plasmid stability assays in a recA mutant showed that (i) the level of deletion formation was considerably higher in this host and (ii) that deletions between short DRs occurred at higher frequencies than those described previously for the parental strain. We propose that in wild-type cells, the recA gene product is involved in recombinational repair of DSBs.Illegitimate recombination is a major cause of instability of cloning vectors in Bacillus subtilis (for reviews, see references 15 and 16). Structural plasmid instability, such as deletion formation and DNA inversion, frequently results from recombination between sequences that have little or no homology (17). Two types of illegitimate recombination can be distinguished. The first relates to the copy choice model of homologous recombination (35) and involves template switching or slipped mispairing of the progressing replication fork during DNA replication (16). This type of intramolecular recombination event is largely RecA independent, although stimulation of slipped mispairing by RecA has been observed (1). The second type of illegitimate recombination involves DNA "breakage-and-reunion" between either short direct repeats (DRs) in both prokaryotic (9, 10, 12) and eukaryotic systems (36, 51) or between non-DR sequences. These events usually involve DNA-handling enzymes, such as topoisomerases, origin-nicking proteins, transposases, site-specific recombinases, and DNA invertases (16). The role of topoisomerases in the generati...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.