A central need in the field of astrobiology is generalized perspectives on life that make it possible to differentiate abiotic and biotic chemical systems McKay (2008). A key component of many past and future astrobiological measurements is the elemental ratio of various samples. Classic work on Earth’s oceans has shown that life displays a striking regularity in the ratio of elements as originally characterized by Redfield (Redfield 1958; Geider and La Roche 2002; Eighty years of Redfield 2014). The body of work since the original observations has connected this ratio with basic ecological dynamics and cell physiology, while also documenting the range of elemental ratios found in a variety of environments. Several key questions remain in considering how to best apply this knowledge to astrobiological contexts: How can the observed variation of the elemental ratios be more formally systematized using basic biological physiology and ecological or environmental dynamics? How can these elemental ratios be generalized beyond the life that we have observed on our own planet? Here, we expand recently developed generalized physiological models (Kempes et al. 2012, 2016, 2017, 2019) to create a simple framework for predicting the variation of elemental ratios found in various environments. We then discuss further generalizing the physiology for astrobiological applications. Much of our theoretical treatment is designed for in situ measurements applicable to future planetary missions. We imagine scenarios where three measurements can be made—particle/cell sizes, particle/cell stoichiometry, and fluid or environmental stoichiometry—and develop our theory in connection with these often deployed measurements.
Geothermobacter sp. strain HR-1 was isolated from the Lō‘ihi Seamount vent system in the Pacific Ocean at a depth of 1,000 m. Reported here is its 3.84-Mb genome sequence.
In the search for life beyond Earth, distinguishing the living from the non-living is paramount. However, this distinction is often elusive, as the origin of life is likely a stepwise evolutionary process, not a singular event. Regardless of the favored origin of life model, an inherent “grayness” blurs the theorized threshold defining life. Here, we explore the ambiguities between the biotic and the abiotic at the origin of life. The role of grayness extends into later transitions as well. By recognizing the limitations posed by grayness, life detection researchers will be better able to develop methods sensitive to prebiotic chemical systems and life with alternative biochemistries.
Experiential learning in the field is an opportunity for students to enter the heart of a scientific discipline. Through such experience, they can extract conceptual clues and discover motivational stepping stones that will potentially influence the rest of their education and career choice. Unfortunately, in Biology, the inescapable topic of Next-Generation Sequencing represents a challenge when it comes to create an educational curriculum that aims to provide students with hands-on experience on sequencers. It is an even more difficult task to accomplish if one’s purpose was to set such curriculum in a field situation. However, in recent years, educators have seen possibility to bring Next-Generation Sequencing to the reach of students more easily, with the Oxford Nanopore MinION, a low-budget, user-friendly, hand-held sequencer. Academic researchers have illustrated the performances of this device in the field and are inspirational for curricula aiming to take the next generation of scientists in the outdoors. We designed a modular 5-day workshop, with nanopore sequencing to be performed in field conditions. Here we describe the material and methods that lead the students and instructors from sample collection, DNA extraction and preparation for nanopore sequencing with MinION to real-time analysis of the data collected. This curriculum was implemented for the first-time aboard Research Vessel Sikuliaq during a transit organized by the STEMSEAS program at Columbia University in collaboration with the University of Alaska BLaST program. The line of investigation formulated for the workshop was an open-ended question that led the students to establish a proof of concept in terms of technology deployment at sea: what will show metagenomic results from DNA obtained from sea water and sequenced with Oxford Nanopore MinION? The workshop took place in October 2018 while Research Vessel Sikuliaq sailed the Alaskans seas for 7 days. Students successfully used nanopore sequencing for multiple metagenomic seawater samples. Their introductory analysis was consistent with environmental conditions and they were able to present their results by the end of the workshop.
Stars provide an enormous gain for interstellar communications at their gravitational focus, perhaps as part of an interstellar network. If the Sun is part of such a network, there should be probes at the gravitational foci of nearby stars. If there are probes within the solar system connected to such a network, we might detect them by intercepting transmissions from relays at these foci. Here, we demonstrate a search across a wide bandwidth for interstellar communication relays beyond the Sun’s innermost gravitational focus at 550 au using the Green Bank Telescope (GBT) and Breakthrough Listen (BL) backend. As a first target, we searched for a relay at the focus of the Alpha Centauri AB system while correcting for the parallax due to Earth’s orbit around the Sun. We searched for radio signals directed at the inner solar system from such a source in the L and S bands. Our analysis, utilizing the turboSETI software developed by BL, did not detect any signal indicative of a non-human-made artificial origin. Further analysis excluded false negatives and signals from the nearby target HD 13908. Assuming a conservative gain of 103 in the L band and roughly 4 times that in the S band, a ∼1 m directed transmitter would be detectable by our search above 7 W at 550 au or 23 W at 1000 au in the L band, and above 2 W at 550 au or 7 W at 1000 au in the S band. Finally, we discuss the application of this method to other frequencies and targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.