Evidence on adult mammalian neurogenesis and scarce studies with human brains led to the idea that adult human neurogenesis occurs in the subgranular zone (SGZ) of the dentate gyrus and in the subventricular zone (SVZ). However, findings published from 2018 rekindled controversies on adult human SGZ neurogenesis. We systematically reviewed studies published during the first decade of characterization of adult human neurogenesis (1994)(1995)(1996)(1997)(1998)(1999)(2000)(2001)(2002)(2003)(2004) -when the two-neurogenic-niche concept in humans was consolidated -and compared with further studies. The synthesis of both periods is that adult human neurogenesis occurs in an intensity ranging from practically zero to a level comparable to adult mammalian neurogenesis in general, which is the prevailing conclusion. Nonetheless, Bernier and colleagues showed in 2000 intriguing indications of adult human neurogenesis in a broad area including the limbic system. Likewise, we later showed evidence that limbic and hypothalamic structures surrounding the circumventricular organs form a continuous zone expressing neurogenesis markers encompassing the SGZ and SVZ. The conclusion is that publications from 2018 on adult human neurogenesis did not bring novel findings on location of neurogenic niches. Rather, we expect that the search of neurogenesis beyond the canonical adult mammalian neurogenic niches will confirm our indications that adult human neurogenesis is orchestrated in a broad brain area. We predict that this approach may, for example, clarify that human hippocampal neurogenesis occurs mostly in the CA1subiculum zone and that the previously identified human rostral migratory stream arising from the SVZ is indeed the column of the fornix expressing neurogenesis markers.
Evidence on adult mammalian neurogenesis and scarce studies with human brains led to the idea that adult human neurogenesis occurs in the subgranular zone (SGZ) of the dentate gyrus and in the subventricular zone (SVZ). However, findings published from 2018 rekindled controversies on adult human SGZ neurogenesis. We systematically reviewed studies published during the first decade of characterization of adult human neurogenesis (1994–2004) – when the two-neurogenic-niche concept in humans was consolidated – and compared with further studies. The synthesis of both periods is that adult human neurogenesis occurs in an intensity ranging from practically zero to a level comparable to adult mammalian neurogenesis in general, which is the prevailing conclusion. Nonetheless, Bernier and colleagues showed in 2000 intriguing indications of adult human neurogenesis in a broad area including the limbic system. Likewise, we later showed evidence that limbic and hypothalamic structures surrounding the circumventricular organs form a continuous zone expressing neurogenesis markers encompassing the SGZ and SVZ. The conclusion is that publications from 2018 on adult human neurogenesis did not bring novel findings on location of neurogenic niches. Rather, we expect that the search of neurogenesis beyond the canonical adult mammalian neurogenic niches will confirm our indications that adult human neurogenesis is orchestrated in a broad brain area. We predict that this approach may, for example, clarify that human hippocampal neurogenesis occurs mostly in the CA1-subiculum zone and that the previously identified human rostral migratory stream arising from the SVZ is indeed the column of the fornix expressing neurogenesis markers.
Microcephaly has been regarded the most remarkable consequence of the Zika virus (ZIKV) epidemic in Brazil 2015. It remains to be determined whether there are factors that contribute to the degree of brain lesion associated with ZIKV infection during pregnancy. Previous studies showed that socioeconomic conditions correlate with ZIKV-associated microcephaly. Certain nutritional deficits display the potential to interfere in the mechanistic target of rapamycin (mTOR) signaling, which plays a major role in the pathophysiology of ZIKV-associated microcephaly. We hypothesize that a nutritional or environmental co-factor that interferes in mTOR signaling correlates with ZIKV-associated birth defects. To assess this hypothesis, we plan to: 1) develop a mouse model of ZIKV-associated microcephaly through intravenous injection of ZIKV and rapamycin for a straightforward interference on mTOR receptor; 2) determine in the experimental model and in cases of ZIKV-associated microcephaly the epigenetic signature (DNA methylation pattern) in neurons and muscle cells harvested by biopsy, and in hematopoietic and mesenchymal stem cells sorted from blood; 3) analyze through mass spectrometry in serum of pregnant female mice submitted to ZIKV and rapamycin injection and in serum of mothers of children with ZIKV-associated microcephaly the metabolomic pattern of cholesterol (a nutritional status marker), vitamin A and its metabolite retinoic acid, folate, and other metabolites related to these three nutritional factors; 4) check whether pregnant female mice submitted to intravenous injection of ZIKV and feed with a deficient diet of the most likely co-factor found in this study give birth to microcephalic mice with features that mimic clinical cases. In summary, our general objective is to develop an experimental model that mimics ZIKV-associated microcephaly cases and to find a co-factor involved in the microcephaly outbreak in Brazil 2015.
Introduction: Open science is a valuable path to boost the global potential of scientific research by removing barriers for producing, disseminating, and putting science into practice, with the spirit of collaboration, inclusivity and focusing on communities’ rising demands. Open science principles instigate the management of scientific knowledge and the enhancement of abilities such as research, project management, team-building skills, and numerous others, which are essential for medical practice according to international recommendations, although still underexplored by medical schools.Methods: Open science, peer education, student leadership and developing of scientific skills were cornerstones to promote the Training New Research Trainers, the first edition of a national Brazilian student-led online workshop aiming to capacitate medical students in such targeted competencies and abilities through active teaching and learning methodologies.Results: Despite the challenges of online format, as impairment in some dynamics and assessment methods, it improved the access to the event from all Brazilian regions, totaling 409 submissions. Thus, it was necessary to have a previous selection of participants and adjustments in the workshop to assist twice the expected attendants.Discussion and Conclusions: Training New Research Trainers surpassed the national distribution inequalities of research opportunities and resources; mirrored open science bases in terms of access, education and methodology; and showed to be a promising opportunity for students to be protagonists of their learning process and to contribute to future changes in their reality, especially regarding the public health landscape. Improvements and consolidation of the workshop protocol and its expansion through national and international partnerships are the following goals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.