Recently, we demonstrated that IgG Abs can organize into ordered hexamers after binding their cognate Ags expressed on cell surfaces. This process is dependent on Fc:Fc interactions, which promote C1q binding, the first step in classical pathway complement activation. We went on to engineer point mutations that stimulated IgG hexamer formation and complement-dependent cytotoxicity (CDC). The hexamer formation–enhanced (HexaBody) CD20 and CD38 mAbs support faster, more robust CDC than their wild-type counterparts. To further investigate the CDC potential of these mAbs, we used flow cytometry, high-resolution digital imaging, and four-color confocal microscopy to examine their activity against B cell lines and primary chronic lymphocytic leukemia cells in sera depleted of single complement components. We also examined the CDC activity of alemtuzumab (anti-CD52) and mAb W6/32 (anti-HLA), which bind at high density to cells and promote substantial complement activation. Although we observed little CDC for mAb-opsonized cells reacted with sera depleted of early complement components, we were surprised to discover that the Hexabody mAbs, as well as ALM and W6/32, were all quite effective at promoting CDC in sera depleted of individual complement components C6 to C9. However, neutralization studies conducted with an anti-C9 mAb verified that C9 is required for CDC activity against cell lines. These highly effective complement-activating mAbs efficiently focus activated complement components on the cell, including C3b and C9, and promote CDC with a very low threshold of MAC binding, thus providing additional insight into their enhanced efficacy in promoting CDC.
Autism spectrum disorder (ASD) is multifactorial, with both genetic as well as environmental factors working in concert to develop the autistic phenotype. Immunological disturbances in autistic individuals have been reported and a role for food allergy has been suggested in ASD. Single gene mutations in mammalian target of rapamycin (mTOR) signaling pathway are associated with the development of ASD and enhanced mTOR signaling plays a central role in directing immune responses towards allergy as well. Therefore, the mTOR pathway may be a pivotal link between the immune disturbances and behavioral deficits observed in ASD. In this study it was investigated whether the mTOR pathway plays a role in food allergy-induced behavioral and immunological deficits. Mice were orally sensitized and challenged with whey protein. Meanwhile, cow's milk allergic (CMA) mice received daily treatment of rapamycin. The validity of the CMA model was confirmed by showing increased allergic immune responses. CMA mice showed reduced social interaction and increased repetitive self-grooming behavior. Enhanced mTORC1 activity was found in the brain and ileum of CMA mice. Inhibition of mTORC1 activity by rapamycin improved the behavioral and immunological deficits of CMA mice. This effect was associated with increase of Treg associated transcription factors in the ileum of CMA mice. These findings indicate that mTOR activation may be central to both the intestinal, immunological, and psychiatric ASD-like symptoms seen in CMA mice. It remains to be investigated whether mTOR can be seen as a therapeutic target in cow's milk allergic children suffering from ASD-like symptoms.
A 13-year-old sulphur-crested cockatoo (Cacatua galerita) was presented with a mass surrounding the right elbow joint. Radiographs showed a soft tissue mass. The right wing was amputated. Histological examination of the mass revealed an incompletely lobulated tumour composed of strands of spindle-shaped cells and of epithelial cells resembling acini. On morphological grounds the tumour was classified to be a synovial cell sarcoma. After 6 months the bird was returned for examination because of lameness in the right leg. Radiographs showed osteolysis in the right tibiotarsal bone. Cytological investigation of a bone marrow biopsy revealed neoplasia. The bird was euthanized. Necropsy revealed metastases in many organs. This is believed to be the first reported case of synovial cell sarcoma in a bird.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.