Range imaging has become a valuable technology for many kinds of applications in recent years. Numerous systematic deviations occur during the measurement process carried out by available systems. These systematics are partly excited by external and partly excited by internal influences. In this paper the following investigations will be presented in closer detail. First the statistics of the distance measurement of the analyzed range imaging cameras SwissRanger TM SR-2 and SR-3000 will be shown. Besides the question if the measurements are Gaussian distributed, the precision of the measurements will be shown. This aspect is of importance to answer the question if the mean value of a series of measurements leads to more precise data. Second diverse influencing parameters like the target's reflectivity and external as well as internal temperature are aimed. The dependency of the distance measurements with respect to the amplitude is one of the main aspects in this paper. A specialized set up has been developed in order to derive experimentally the detailed correlation, which is expressed in terms of linearity deviations. Besides the results of some specific aspects, an overview of the recommended calibration procedure is given. The reader of this paper will be enabled to understand the calibration steps needed to gain highly accurate data from the investigated range imaging cameras. Due to the fact that range imaging cameras are on their way to become state of the art in 3D capturing of the environment, it is of importance to develop strategies for the calibration of such sensors in order to enable users to revert to these principles for the sake of simplicity. Therefore, these strategies long for sophisticated approaches and reliable results of investigations. This paper will introduce such an approach to be discussed within the scientific and user environment. One of the main achievements of this work is the introduction of a method to significantly decrease the influence of temperature on the distance measurements by means of a di¤erential measurement principle setup. The verification of the functionality is presented, as well.
Dynamic root-development models are indispensable for biomechanical and biomass allocation studies, and also play an important role in understanding slope stability. There are few rootdevelopment models in the literature, and there is a specific lack of dynamic models. Therefore, the aim of this study is to develop a 3D growth-development model for coarse roots, which is species independent, as long as annual rings are formed. In order to implement this model, the objectives are (I) to interpolate annual growth layers, and (II) to evaluate the interpolations and annual volume computations. The model developed is a combination of 3D laser scans and 2D tree-ring data. A FARO laser ScanArm is used to acquire the coarse-root structure. A MATLAB program then integrates the ringwidth measurements into the 3D model. A weighted interpolation algorithm is used to compute cross sections at any point within the model to obtain growth layers. The algorithm considers both the root structure and the ring-width data. The model reconstructed ring profiles with a mean absolute error for mean ring chronologies of <9% and for single radii of <20%. The interpolation accuracy was dependent on the number of input sections and root curvature. Total volume computations deviated by 3.5-6.6% from the reference model. A new robust root-modelling tool was developed which allows for annual volume computations and sophisticated root-development analyses.
Many security & defense systems need to capture their environment in one, two or even three dimensions. Therefore adequate measurement sensors are required that provide fast, accurate and reliable 3D data. With the upcoming range imaging cameras, like the SwissRanger TM introduced by CSEM Switzerland, new cheap sensors with such ability and high performance are available on the market. Because of the measurement concept these sensors long for a special calibration approach. Due to the implementation of several thousand distance measurement systems as pixels, a standard photogrammetric camera calibration is not sufficient. This paper will present results of investigations on the accuracy of the range imaging camera SwissRanger. A systematic calibration method is presented which takes into consideration the different influencing parameters, like reflectivity, integration time, temperature and distance itself. The analyzed parameters with respect to their impact on the distance measuring pixels and their output data were determined. The investigations were mainly done on the high precision calibration track line in the calibration laboratory at ETH Zurich, which provides a relative accuracy of several microns. In this paper it will be shown, under which circumstances the goal accuracy of the sub centimeter level can be reached. The results of this work can be very helpful for users of range imaging systems to increase their accuracy and thus the reliability of their systems. As an example, the usefulness of a range imaging camera in security systems for room surveillance is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.