The purpose of this study was to characterize oscillations in muscle sympathetic nerve activity (MSNA) in the frequency domain in healthy subjects and patients with congestive heart failure (CHF) and to relate these to blood pressure (BP), heart rate (HR), and breathing frequency. MSNA burst frequency was significantly greater in CHF [52 +/- 21 (n = 12) vs. 35 +/- 11 (n = 19) bursts/min, P < 0.05], whereas breathing frequency and HR were similar. There was no significant difference between CHF and healthy subjects in total power, harmonic power, and nonharmonic power in the MSNA spectrum from 0 to 0.5 Hz, but low frequency power (LF, 0.05-0.15 Hz, P < 0.05) was reduced in heart failure patients. There was less coherence between BP and MSNA in the LF range, but similar spectral power in both groups in the very LF (VLF, 0-0.05 Hz) and high frequency (0.15-0.5 Hz) ranges. The transfer of MSNA oscillations into BP in the VLF (P < 0.05) and LF (P < 0.02) ranges was significantly lower in CHF, but gains in the transfer function and in the coherence between BP and MSNA and in the coherence between respiration and MSNA were similar in the two groups. These observations indicate that modulation of MSNA by the arterial baroreflex and respiration is preserved in CHF. The loss of LF power in the MSNA signal may be due to impaired neuroeffector transduction. The higher sympathetic nerve firing rate in CHF would therefore appear to be caused by factors other than the loss of regulation by these two inhibitory influences.
The use of automated blood pressure (BP) monitoring is growing as it does not require much expertise and can be performed by patients several times a day at home. Oscillometry is one of the most common measurement methods used in automated BP monitors. A review of the literature shows that a large variety of oscillometric algorithms have been developed for accurate estimation of BP but these algorithms are scattered in many different publications or patents. Moreover, considering that oscillometric devices dominate the home BP monitoring market, little effort has been made to survey the underlying algorithms that are used to estimate BP. In this review, a comprehensive survey of the existing oscillometric BP estimation algorithms is presented. The survey covers a broad spectrum of algorithms including the conventional maximum amplitude and derivative oscillometry as well as the recently proposed learning algorithms, model-based algorithms, and algorithms that are based on analysis of pulse morphology and pulse transit time. The aim is to classify the diverse underlying algorithms, describe each algorithm briefly, and discuss their advantages and disadvantages. This paper will also review the artifact removal techniques in oscillometry and the current standards for the automated BP monitors.
Cheyne-Stokes respiration (CSR) is a form of periodic breathing associated with periodic oscillations in blood pressure (BP) and heart rate (HR), which have been attributed to hypoxia and arousals from sleep. We hypothesized that periodic alterations in ventilation alone would promote oscillations in BP and HR. Seven healthy, wakeful subjects breathed in three patterns, as follows: (1) regular breathing (RB); (2) periodic breathing with three (PB3: cycle frequency = 0.035 Hz) augmented breaths alternating with 20-s apneas; and (3) periodic breathing with five (PB5: cycle frequency = 0.030 Hz) augmented breaths alternating with 20-s apneas. SaO2 remained above 95% throughout. During periodic breathing, peaks in BP and HR occurred during the ventilatory period and troughs occurred during apnea. The magnitudes of systolic BP oscillations increased significantly from RB (14 +/- 5 mm Hg) to PB3 (20 +/- 4 mm Hg) and PB5 (25 +/- 7 mm Hg; p < 0.005). HR oscillations also increased from regular breathing (13 +/- 6.0 beats/min) to PB3 (20.2 +/- 2.3 beats/min) and PB5 (20.2 +/- 4.7 beats/ min; p < 0.01). Spectral analysis showed that during periodic breathing there were discrete peaks in the spectral power of ventilation, BP, and R-wave-to-R-wave interval at the periodic breathing cycle frequencies. We conclude that oscillations in ventilation occurring during periodic breathing can amplify and entrain oscillations in BP and HR in the absence of hypoxia or arousals from sleep.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.