In the recent years, reversible logic has emerged as a promising technology having its applications in low power CMOS, quantum computing, nanotechnology, and optical computing. The classical set of gates such as AND, OR, and EXOR are not reversible. This paper proposes a new 4 * 4 reversible gate called "TSG" gate. The proposed gate is used to design efficient adder units. The most significant aspect of the proposed gate is that it can work singly as a reversible full adder i.e reversible full adder can now be implemented with a single gate only. The proposed gate is then used to design reversible ripple carry and carry skip adders. It is demonstrated that the adder architectures designed using the proposed gate are much better and optimized, compared to their existing counterparts in literature; in terms of number of reversible gates and garbage outputs. Thus, this paper provides the initial threshold to building of more complex system which can execute more complicated operations using reversible logic.I.
Reversible logic has shown potential to have extensive applications in emerging technologies such as quantum computing, optical computing, quantum dot cellular automata as well as ultra low power VLSI circuits. Recently, several researchers have focused their efforts on the design and synthesis of efficient reversible logic circuits. In these works, the primary design focus has been on optimizing the number of reversible gates and the garbage outputs. The number of reversible gates is not a good metric of optimization as each reversible gate is of different type and computational complexity, and thus will have a different quantum cost and delay. The computational complexity of a reversible gate can be represented by its quantum cost. Further, delay constitutes an important metric, which has not been addressed in prior works on reversible sequential circuits as a design metric to be optimized. In this work, we present novel designs of reversible sequential circuits that are optimized in terms of quantum cost, delay and the garbage outputs. The optimized designs of several reversible sequential circuits are presented including the D Latch, the JK latch, the T latch and the SR latch, and their corresponding reversible master-slave flip-flop designs. The proposed master-slave flip-flop designs have the special property that they don't require the inversion of the clock for use in the slave latch. Further, we introduce a novel strategy of cascading a Fredkin gate at the outputs of a reversible latch to realize the designs of the Fredkin gate based asynchronous set/reset D latch and the master-slave D flip-flop. Finally, as an example of complex reversible sequential circuits, the reversible logic design of the universal shift register is introduced. The proposed reversible sequential designs were verified through simulations using Verilog HDL and simulation results are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.