BackgroundDate palm, as one of the most important fruit crops in North African and West Asian countries including Oman, is facing serious growth problems due to salinity, arising from persistent use of saline water for irrigation. Although date palm is a relatively salt-tolerant plant species, its adaptive mechanisms to salt stress are largely unknown.ResultsIn order to get an insight into molecular mechanisms of salt tolerance, RNA was profiled in leaves and roots of date palm seedlings subjected to NaCl for 10 days. Under salt stress, photosynthetic parameters were differentially affected; all gas exchange parameters were decreased but the quantum yield of PSII was unaffected while non-photochemical quenching was increased. Analyses of gene expression profiles revealed 2630 and 4687 genes were differentially expressed in leaves and roots, respectively, under salt stress. Of these, 194 genes were identified as commonly responding in both the tissue sources. Gene ontology (GO) analysis in leaves revealed enrichment of transcripts involved in metabolic pathways including photosynthesis, sucrose and starch metabolism, and oxidative phosphorylation, while in roots genes involved in membrane transport, phenylpropanoid biosynthesis, purine, thiamine, and tryptophan metabolism, and casparian strip development were enriched. Differentially expressed genes (DEGs) common to both tissues included the auxin responsive gene, GH3, a putative potassium transporter 8 and vacuolar membrane proton pump.ConclusionsLeaf and root tissues respond differentially to salinity stress and this study has revealed genes and pathways that are associated with responses to elevated NaCl levels and thus may play important roles in salt tolerance providing a foundation for functional characterization of salt stress-responsive genes in the date palm.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-017-3633-6) contains supplementary material, which is available to authorized users.
BackgroundDNA methylation has a potential role in controlling gene expression and may, therefore, contribute to salinity adaptation in plants. Caliph medic (Medicago truncatula) is a model legume of moderate salinity tolerance capacity; however, a base-resolution DNA methylome map is not yet available for this plant.ResultsIn this report, a differential whole-genome bisulfite sequencing (WGBS) was carried out using DNA samples extracted from root tissues exposed to either control or saline conditions. Around 50 million differentially methylated sites (DMSs) were recognized, 7% of which were significantly (p < 0.05, FDR < 0.05) altered in response to salinity. This analysis showed that 77.0% of the contexts of DMSs were mCHH, while only 9.1% and 13.9% were mCHG and mCG, respectively. The average change in methylation level was increased in all sequence contexts, ranging from 3.8 to 10.2% due to salinity stress. However, collectively, the level of the DNA methylation in the gene body slightly decreased in response to salinity treatment. The global increase in DNA methylation due to salinity was confirmed by mass spectrometry analysis. Gene expression analysis using qPCR did not reveal a constant relationship between the level of mCG methylation and the transcription abundance of some genes of potential importance in salinity tolerance, such as the potassium channel KAT3, the vacuolar H+-pyrophosphatase (V-PPase), and the AP2/ERF and bZIP transcription factors, implying the involvement of other epigenetic gene expression controllers. Computational functional prediction of the annotated genes that embrace DMSs revealed the presence of enzymes with potential cellular functions in biological processes associated with salinity tolerance mechanisms.ConclusionsThe information obtained from this study illustrates the effect of salinity on DNA methylation and shows how plants can remodel the landscape of 5-methylcytosine nucleotide (5-mC) in the DNA across gene structures, in response to salinity. This remodeling varies between gene regions and between 5-mC sequence contexts. The mCG has a vague impact on the expression levels of a few selected potentially important genes in salt tolerant mechanisms.Electronic supplementary materialThe online version of this article (10.1186/s12864-018-4484-5) contains supplementary material, which is available to authorized users.
In addition to being a forage crop, Caliph medic (Medicago truncatula) is also a model legume plant and is used for research focusing on the molecular characterization of the interaction between rhizobia and plants. However, the endophytic microbiome in this plant is poorly defined. Endophytic bacteria play a role in supplying plants with the basic requirements necessary for growth and development. Moreover, these bacteria also play a role in the mechanism of salinity stress adaptation in plants. As a prelude to the isolation and utilization of these bacteria in Caliph medic farming, 41 bacterial OTUs were identified in this project from within the interior of the roots of this plant by pyrosequencing of the small ribosomal subunit gene (16S rDNA) using a cultivation-independent approach. In addition, the differential abundance of these bacteria was studied following exposure of the plants to salinity stress. About 29,064 high-quality reads were obtained from the sequencing of six libraries prepared from control and salinity-treated tissues. Statistical analysis revealed that the abundance of ~70% of the OTUs was significantly (p ≤ 0.05) altered in roots that were exposed to salinity stress. Sequence analysis showed a similarity between some of the identified species and other, known, growth-promoting bacteria, marine and salt-stressed soil-borne bacteria, and nitrogen-fixing bacterial isolates. Determination of the amendments to the bacterial community due to salinity stress in Caliph medic provides a crucial step toward developing an understanding of the association of these endophytes, under salt stress conditions, in this model plant. To provide direct evidence regarding their growth promoting activity, a group of endophytic bacteria were isolated from inside of plant roots using a cultivation-dependent approach. Several of these isolates were able to produce ACC-deaminase, ammonia and IAA; and to solubilize Zn+2 and PO4-3. This data is consistent with the predicted occurrence (based on cultivation-independent techniques) of these bacteria and provides some insight into the importance of the endophytic bacteria in Caliph medic when grown under normal and saline conditions.
Although the date palm tree is an extremophile with tolerance to drought and certain levels of salinity, the damage caused by extreme salt concentrations in the soil, has created a need to explore stress-responsive traits and decode their mechanisms. Metallothioneins (MTs) are low-molecular-weight cysteine-rich proteins that are known to play a role in decreasing oxidative damage during abiotic stress conditions. Our previous study identified date palm metallothionein 2A (PdMT2A) as a salt-responsive gene, which has been functionally characterized in yeast and Arabidopsis in this study. The recombinant PdMT2A protein produced in Escherichia coli showed high reactivity against the substrate 5′-dithiobis-2-nitrobenzoic acid (DTNB), implying that the protein has the property of scavenging reactive oxygen species (ROS). Heterologous overexpression of PdMT2A in yeast (Saccharomyces cerevisiae) conferred tolerance to drought, salinity and oxidative stresses. The PdMT2A gene was also overexpressed in Arabidopsis, to assess its stress protective function in planta. Compared to the wild-type control, the transgenic plants accumulated less Na+ and maintained a high K+/Na+ ratio, which could be attributed to the regulatory role of the transgene on transporters such as HKT, as demonstrated by qPCR assay. In addition, transgenic lines exhibited higher chlorophyll content, higher superoxide dismutase (SOD) activity and improved scavenging ability for reactive oxygen species (ROS), coupled with a better survival rate during salt stress conditions. Similarly, the transgenic plants also displayed better drought and oxidative stress tolerance. Collectively, both in vitro and in planta studies revealed a role for PdMT2A in salt, drought, and oxidative stress tolerance.
Recent studies on salinity tolerance in date palm revealed the discovery of salt-responsive genes including PdPIP1;2, a highly conserved aquaporin gene in plants, which was functionally characterized in this study to investigate its precise role in drought and salinity tolerance. Immunoblot assay showed a high level of PIP1 protein accumulation only in the leaves of date palm plants when grown under drought, an observation which may imply the involvement of PIP1;2 in CO2 uptake. Heterologous overexpression of PdPIP1;2 in yeast (Saccharomyces cerevisiae) improved tolerance to salinity and oxidative stress. While, heterologous overexpression of PdPIP1;2 in Arabidopsis had significantly (p < 0.05) increased biomass, chlorophyll content, and root length under drought and salinity. In addition, a significantly (p < 0.05) higher percentage of transgenic plants could be recovered by rewatering after drought stress, indicating the ability of the transgenic plants to maintain water and viability under drought. Transgenic plants under drought and salinity maintained significantly (p < 0.05) higher K+/Na+ ratios than wild type (WT) plants, an observation which may represent an efficient tolerance mechanism controlled by the transgene. Collectively, this study provided an insight on the mechanism by which PdPIP1;2 conferred tolerance to salt and drought stresses in date palm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.