Biogenic synthesis of silver (AgNPs) and gold nanoparticles (AuNPs) using aqueous extract of Euphrasia officinalis has been reported. Stable AgNPs and AuNPs were formed on adding aqueous solutions of silver nitrate and chloroauric acid with E. officinalis leaf extract, in 19 min and 2 min, respectively. The synthesis method used in present study was simple, reliable, rapid, cost effective and ecofriendly. The synthesized nanoparticles were characterized with field emission transmission electron microscopy (FE-TEM), elemental mapping, selected area diffraction pattern (SAED), energy-dispersive X-ray spectroscopy (EDS), X-ray diffractometer (XRD), particle size distribution, zeta potential and Fourier-transform infrared spectroscopy (FTIR). The UV-Vis spectrum confirmed the synthesis of nanoparticles as the absorption band was observed at 450 nm for AgNPs and at 558 nm for AuNPs. The TEM images revealed quasi-spherical shape of AgNPs and AuNPs. The size of nanoparticles was determined to be 40.37 ± 1.8 nm for AgNPs and 49.72 ± 1.2 nm for AuNPs. The zeta potential value demonstrated the negative surface charge and stable nature of nanoparticles. Crystalline nature of the nanoparticles in the face-centred cubic (fcc) structure was confirmed by the peaks in the XRD pattern and SAED pattern. FTIR results showed the functional groups involved in reduction of silver and gold ions to metal nanoparticles. For biomedical application, the nanoparticles have been explored for anticancer, antibacterial and biofilm inhibition activities. It was observed that AgNPs exert anticancer activity against human lung cancer (A549) and human cervical cancer (HeLa) cell lines. On the other hand, AuNPs were able to inhibit only human cervical cancer cells. Furthermore, the AgNPs were active against clinically isolated human pathogens like Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Vibrio parahaemolyticus. Additionally, AgNPs also showed biofilm inhibition activity against S. aureus and P. aeruginosa.
Silver nanoparticles (AgNPs) are known to have bacteriostatic and bactericidal effects. The present study highlights the extracellular synthesis of AgNPs and its antibacterial properties. The AgNPs were synthesized using Pseudomonas sp. THG-LS1.4 strain which had been isolated from soil. The AgNPs were characterized by field emission-transmission electron microscopy (FE-TEM), X-ray diffraction (XRD), Fourier transform-infrared (FT-IR) spectroscopy, and particle size distribution (DLS). The AgNPs displayed maximum absorbance at 412 nm and were irregular in shape ranging from 10 to 40 nm. The XRD spectroscopy results demonstrated the crystalline nature of nanoparticles. The AgNPs showed antimicrobial activity against Bacillus cereus, Staphylococcus aureus, Candida tropicalis, Vibrio parahaemolyticus, Escherichia coli and Pseudomonas aeruginosa. Furthermore, the AgNPs were also evaluated for their increased antibacterial activities with various antibiotics against Escherichia coli, Pseudomonas aeruginosa and Salmonella enterica. Additionally, AgNPs showd biofilm inhibition activity. The biosynthesized AgNPs were found to be a potent agent against tested pathogens. More importantly, we highlight the applications of AgNPs as an antimicrobial agent.
This study highlights the facile, reliable, cost effective, and ecofriendly synthesis of silver nanoparticles (AgNPs) using Borago officinalis leaves extract efficiently. The biosynthesis of AgNPs was verified by UV-Vis spectrum which showed the surface plasmon resonance (SPR) band at 422 nm. Transmission electron microscope (TEM) analysis revealed that the particles were spherical, hexagonal, and irregular in shape and had size ranging from 30 to 80 nm. The energy dispersive X-ray spectroscopy (EDX) and elemental mapping have displayed the purity and maximum distribution of silver in the AgNPs. The crystalline nature of AgNPs had been identified using X-ray diffraction (XRD) and selected area diffraction pattern (SAED). The particle size analysis revealed that the Z-average diameter of the AgNPs was 50.86 nm with polydispersity index (PDI) 0.136. Zeta potential analysis displayed the colloidal stability of AgNPs. This work also showed the efficacy of AgNPs against lung cancer cell lines (A549) and cervical cancer cell line (HeLa), in vitro. The AgNPs showed cytotoxicity to the A549 and HeLa cancer cell line at the concentrations 5 and 2 μg/ml. The AgNPs were also explored for the antibacterial activity including biofilm inhibition against pathogenic bacteria. The B. officinalis leaves extract can be used efficiently for green synthesis AgNPs. The biosynthesized AgNPs demonstrated potentials as anticancer and antibacterial agents. This work provides helpful insight into the development of new anticancer and antimicrobial agents.
Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre-including this research content-immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.