Despite growing awareness of the importance of controlling neglected tropical diseases as a contribution to poverty alleviation and achieving the Millennium Development Goals, there is a need to up-scale programmes to achieve wider public health benefits. This implementation deficit is attributable to several factors but one often overlooked is the specific difficulty in tackling diseases that involve both people and animals - the zoonoses. A Disease Reference Group on Zoonoses and Marginalised Infectious Diseases (DRG6) was convened by the Special Programme for Research and Training in Tropical Diseases (TDR), a programme executed by the World Health Organization and co-sponsored by UNICEF, UNDP, the World Bank and WHO. The key considerations included: (a) the general lack of reliable quantitative data on their public health burden; (b) the need to evaluate livestock production losses and their additional impacts on health and poverty; (c) the relevance of cross-sectoral issues essential to designing and implementing public health interventions for zoonotic diseases; and (d) identifying priority areas for research and interventions to harness resources most effectively. Beyond disease specific research issues, a set of common macro-priorities and interventions were identified which, if implemented through a more integrated approach by countries, would have a significant impact on human health of the most marginalised populations characteristically dependent on livestock.
Aedes aegypti is the most important arboviral disease vector worldwide. In Africa, it exists as two morphologically distinct forms, often referred to as subspecies, Aaa and Aaf. There is a dearth of information on the distribution and genetic diversity of these two forms in Sudan and other African Sahelian region countries. This study aimed to explore the distribution and genetic diversity of Aedes aegypti subspecies using morphology and Cytochrome oxidase-1 mitochondrial marker in a large Sahelian zone in Sudan. An extensive cross-sectional survey of Aedes aegypti in Sudan was performed. Samples collected from eight locations were morphologically identified, subjected to DNA extraction, amplification, sequencing, and analyses. We classified four populations as Aaa and the other four as Aaf. Out of 140 sequence samples, forty-six distinct haplotypes were characterized. The haplotype and nucleotide diversity of the collected samples were 0.377–0.947 and 0.002–0.01, respectively. Isolation by distance was significantly evident (r = 0.586, p = 0.005). The SAMOVA test indicated that all Aaf populations are structured in one group, while the Aaa clustered into two groups. AMOVA showed 53.53% genetic differences within populations and 39.22% among groups. Phylogenetic relationships indicated two clusters in which the two subspecies were structured. Thus, the haplotype network consisted of three clusters.
Background Male factor is the major contributor in roughly half of infertility cases. Genetic factors account for 10–15% of male infertility. Microdeletions of azoospermia factors (AZF) on the Yq region are the second most frequent spermatogenesis disorder among infertile men after Klinefelter syndrome. We detected in our previous study a frequency of 37.5% AZF microdeletions which investigated mainly the AZFb and AZFc. We attempted in this study for the first time to evaluate the frequencies of all AZF sub-regions microdeletions and to analyze reproductive hormonal profiles in idiopathic cases of azoospermic and oligozoospermic men from Sudan. Methods A group of 51 medically fit infertile men were subjected to semen analysis. Four couples have participated in this study as a control group. Semen analysis was performed according to WHO criteria by professionals at Elsir Abu-Elhassan Fertility Centre where samples have been collected. We detected 12 STSs markers of Y chromosome AZF microdeletions using a multiplex polymerase chain reaction. Analysis of reproductive hormone levels including Follicle Stimulating, Luteinizing, and Prolactin hormones was performed using ELISA. Comparisons between outcome groups were performed using Student’s t-test Chi-square test or Fisher’s exact test. Results AZF microdeletion was identified in 16 out of 25 Azoospermic and 14 out of 26 of the Oligozoospermic. Microdeletion in the AZFa region was the most frequent among the 30 patients (N = 11) followed by AZFc, AZFd (N = 4 for each) and AZFb (N = 3). Among the Oligozoospermic participants, the most frequent deletions detected were in the AZFa region (N = 10 out of 14) and was significantly associated with Oligozoospermic phenotype, Fisher's Exact Test (2-sided) p = 0.009. Among the Azoospermic patients, the deletion of the AZFc region was the most frequent (N = 9 out of 16) and was significantly associated with Azoospermia phenotype Fisher's Exact Test p = 0.026. There was a significant difference in Y chromosome microdeletion frequency between the two groups. The hormonal analysis showed that the mean levels of PRL, LH, and FSH in Azoospermic patients were slightly higher than those in oligozoospermic. A weak negative correlation between prolactin higher level and Azoospermic patients was detected. (AZFa r = 0.665 and 0.602, p = 0.000 and 0.0004, AZFb r = 0.636 and 0.409, p = 0.000 and 0.025, and AZFd r = 0.398 and 0.442, p = 0.029 and 0.015). The correlation was positive for AZFa and negative for AZFb and AZFd. Conclusions We concluded in this study that the incidences of microdeletions of the Y chromosome confined to AZF a, b, c and d regions is 58.8% in infertile subjects with 31.4% were Azoospermic and 27.5% were Oligozoospermic. This might provide a piece of evidence that these specified regions of the Y chromosome are essential for controlling spermatogenesis. These findings will be useful for genetic counseling within infertility clinics in Sudan and to adopt appropriate methods for assisted reproduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.