The impact of insecticide resistance in malaria vectors is poorly understood and quantified. Here a series of geospatial datasets for insecticide resistance in malaria vectors are provided, so that trends in resistance in time and space can be quantified, and the impact of resistance found in wild populations on malaria transmission in Africa can be assessed. Specifically, data have been collated and geopositioned for the prevalence of insecticide resistance, as measured by standard bioassays, in representative samples of individual species or species complexes. Data are provided for the Anopheles gambiae species complex, the Anopheles funestus subgroup, and for nine individual vector species. Data are also given for common genetic markers of resistance to support analyses of whether these markers can improve the ability to monitor resistance in low resource settings. Allele frequencies for known resistance-associated markers in the Voltage-gated sodium channel ( Vgsc ) are provided. In total, eight analysis-ready, standardised, geopositioned datasets encompassing over 20,000 African mosquito collections between 1957 and 2017 are released.
BackgroundAgricultural pesticides may play a profound role in selection of resistance in field populations of mosquito vectors. The objective of this study is to investigate possible links between agricultural pesticide use and development of resistance to insecticides by the major malaria vector Anopheles arabiensis in northern Sudan. Methodology/Principal FindingsEntomological surveys were conducted during two agricultural seasons in six urban and peri-urban sites in Khartoum state. Agro-sociological data were collected from 240 farmers subjected to semi-structured questionnaires based on knowledge attitude and practice (KAP) surveys. Susceptibility status of An. arabiensis (n=6000) was assessed in all sites and during each season using WHO bioassay tests to DDT, deltamethrin, permethrin, Malathion and bendiocarb. KAP analysis revealed that pesticide application was common practice among both urban and peri-urban farmers, with organophosphates and carbamates most commonly used. Selection for resistance is likely to be greater in peri-urban sites where farmers apply pesticide more frequently and are less likely to dispose of surpluses correctly. Though variable among insecticides and seasons, broad-spectrum mortality was slightly, but significantly higher in urban than peri-urban sites and most marked for bendiocarb, to which susceptibility was lowest. Anopheles arabiensis from all sites showed evidence of resistance or suspected resistance, especially pyrethroids. However, low-moderate frequencies of the L1014F kdr allele in all sites, which was very strongly associated with DDT, permethrin and deltamethrin survivorship (OR=6.14-14.67) suggests that resistance could increase rapidly. ConclusionsUbiquitous multiple-resistance coupled with presence of a clear mechanism for DDT and pyrethroids (kdr L1014F) in populations of An. arabiensis from Khartoum-Sudan suggests careful insecticide management is essential to prolong efficacy. Our findings are consistent with agricultural insecticide use as a source of selection for resistance and argue for coordination between the integrated vector control program and the Ministry of Agriculture to permit successful implementation of rational resistance management strategies.
Aedes aegypti is the most important arboviral disease vector worldwide. In Africa, it exists as two morphologically distinct forms, often referred to as subspecies, Aaa and Aaf. There is a dearth of information on the distribution and genetic diversity of these two forms in Sudan and other African Sahelian region countries. This study aimed to explore the distribution and genetic diversity of Aedes aegypti subspecies using morphology and Cytochrome oxidase-1 mitochondrial marker in a large Sahelian zone in Sudan. An extensive cross-sectional survey of Aedes aegypti in Sudan was performed. Samples collected from eight locations were morphologically identified, subjected to DNA extraction, amplification, sequencing, and analyses. We classified four populations as Aaa and the other four as Aaf. Out of 140 sequence samples, forty-six distinct haplotypes were characterized. The haplotype and nucleotide diversity of the collected samples were 0.377–0.947 and 0.002–0.01, respectively. Isolation by distance was significantly evident (r = 0.586, p = 0.005). The SAMOVA test indicated that all Aaf populations are structured in one group, while the Aaa clustered into two groups. AMOVA showed 53.53% genetic differences within populations and 39.22% among groups. Phylogenetic relationships indicated two clusters in which the two subspecies were structured. Thus, the haplotype network consisted of three clusters.
BackgroundAbu Hamed, the northernmost onchocerciasis focus in the world, is located along the River Nile banks in the Nubian Desert. Hydroelectric dams can alter activity of black flies and may provide breeding sites for black fly. Merowe Dam, the largest hydropower project in Africa, was built west of Abu Hamed focus in 2009. The impact of the Dam on onchocerciasis and its black fly vectors in Abu Hamed focus was measured in this study.FindingsEntomological surveys for aquatic stages and adult Simulium hamedense were conducted before and after the inception of Merowe Dam in 2007/2008 and 2010/2011. There was no black fly breeding or adult activity in the previously known breeding sites upstream of the Merowe Dam with the western most breeding site found in AlSarsaf village near the center of the focus. No adult or aquatic stages of black flies were found downstream of the Dam.ConclusionsThe artificial lake of the Dam flooded all the breeding sites in the western region of the focus and no aquatic stages and/or adult black fly activity were established in the study area upstream of the Dam. The Dam seems to have positive impact on onchocerciasis and its black fly vectors in Abu Hamed focus. These outcomes of the Merowe Dam might have contributed to the recently declared interruption of onchocerciasis transmission in Abu Hamed focus. Continuous entomological surveys are needed to monitor presence of black fly vectors and its impact on the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.