We propose a group signature scheme with a function of designated traceability; each opener has attributes, and a signer of a group signature can be traced by only the openers whose attributes satisfy the boolean formula designated by the signer. We describe syntax and security definitions of the scheme. Then we give a generic construction of the scheme by employing a ciphertext-policy attribute-based encryption scheme.
A public key infrastructure (PKI) is for facilitating the authentication and distribution of public keys. Currently, the most commonly employed approach to PKI is to rely on certificate authorities (CAs), but recently there has been arising more need for decentralized peer-to-peer certification like Webs of Trust. In this paper, we propose an identity-embedding method suitable for decentralized PKI. By embedding not only ID of the candidate public-key owner itself but also IDs of his guarantors into PK, we can construct Web of guarantors on public keys. Here guarantors can be chosen arbitrarily by the candidate publickey owner. Our embedding method uses a combination of two public-key cryptosystems; the first cryptosystem is for PKI directly. Here we employ a technique to embed a string into a public key of the first cryptosystem. As such a string, we choose a concatenation of ID of a candidate public-key owner, IDs of his guarantors, and a public key of the second cryptosystem. This embedded public key of the second cryptosystem is used by the candidate public-key owner that he certainly knows the secret key that corresponds to the public key of the first cryptosystem. Then, with an aid of a broadcast mechanism of an updated public-key list on a peer-to-peer network, we can attain the decentralized PKI. Such an embedding method is concretely realized by the RSA encryption with the Lenstra's algorithm, which can be used as the first cryptosystem. As the second cryptosystem, we employ an elliptic curve encryption whose security is equivalent to the security of the RSA encryption, where the former achieves shorter key size than the latter. We write down concrete values of parameters for a realization of the embedding.
Proxy Mobile IPv6 is a network-based localized mobility management protocol that supports mobility without mobile nodes’ participation in mobility signaling. The details of user authentication procedure are not specified in this standard, hence, many authentication schemes have been proposed for this standard. In 2013, Chuang et al., proposed an authentication method for PMIPv6, called SPAM. However, Chuang et al.’s Scheme protects the network against some security attacks, but it is still vulnerable to impersonation and password guessing attacks. In addition, we discuss other security drawbacks such as lack of revocation procedure in case of loss or stolen device, and anonymity issues of the Chuang et al.’s scheme. We further propose an enhanced authentication method to mitigate the security issues of SPAM method and evaluate our scheme using BAN logic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.