Fc domain fusion can improve the therapeutic effects of relatively small biological molecules such as peptides, cytokines, and antibody fragments. Fc fusion proteins can also be used to enhance the cytotoxic effects of small bispecific antibodies (bsAbs). However, fragmentation of Fc fusion proteins, which mainly occurs around the hinge regions during production, storage, and circulation in the blood, is a major issue. In this study, we first investigated the mechanisms of fragmentation around the hinge region during storage using Fc-fused bsAbs with specificity for epidermal growth factor receptor and CD3 as a model. The fragmentation peaks generated by gel filtration analysis indicated that both contaminating proteases and dissolved active oxygen should be considered causes of fragmentation. We designed and constructed variants by introducing a point mutation into the upper hinge region, which reduced the cleavage caused by dissolved active oxygen, and shortened the hinge region to restrict access of proteases. These hinge modifications improved fragmentation resistance and did not affect the biological activity of the bsAbs in vitro. We confirmed the versatility of the hinge modifications using another Fc-fused bsAb. Our results show that hinge modifications to the Fc fusion protein, especially the introduction of a point mutation into the upper hinge region, can reduce fragmentation substantially, and these modifications can be used to improve the fragmentation resistance of other recombinant Fc fusion proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.